Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способность к кристаллизации

    Кристаллизационные явления в каучуках и резинах. Способность кристаллизоваться в той или иной мере присуща большинству эластомеров. Лишь каучуки с наименее регулярной структурой цепи (бутадиен-стирольные, бутадиен-нитрильные, натрий-бутадиеновый и некоторые другие) не способны к кристаллизации. [c.46]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]


    Каучуки регулярного строения имеют, как правило, низкие температуры стеклования. Вместе с тем их способность к кристаллизации осложняет эксплуатацию резин на основе этих каучуков при низких температурах, так как температура максимальной скорости кристаллизации обычно находится значительно выше температуры стеклования (см. гл. 2). [c.91]

    Конденсационные статистические и блоксополимеры отличаются по свойствам. Свойства блоксополимеров зависят от массовой доли и расположения различных повторяющихся звеньев в сополимере. Это позволяет регулировать свойства блоксополимеров способность к кристаллизации, эластичность, температуру стеклования, плавления и др. Для статистического сополимера такой зависимости свойств не наблюдается [3, с. 123]. [c.173]

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]


    Если размеры замещающих групп в звеньях полимерной цепи невелики, то хаотичное расположение их не препятствует взаимному сближению отдельных участков цепей и полимер сохраняет способность к кристаллизации. [c.51]

    При отсутствии побочных реакций поликонденсация дикарбоновых кислот и двухатомных спиртов или диэфиров и двухатомных спиртов может привести к образованию линейного полимера, способного к кристаллизации. Для получения таких полимеров необходимо отсутствие в молекулах исходных компонентов боковых замещающих групп и симметричное расположение функциональных групп на концах макромолекул, так как боковые ответвления в макромолекулах полиэфиров препятствуют образованию кристаллитов. [c.420]

    Вследствие малого размера гидроксильной группы этот сополимер не лишен способности к кристаллизации. Между участками соседних макромолекул, образующих кристаллиты, возникают водородные связи, обусловленные присутствием гидроксильных групп. Этим объясняется большая прочность пленок и нитей, изготовленных из продукта гидролиза сополимера этилеиа и винилацетата, по сравнению с прочностью таких же изделий из полиэтилена. Одновременно с этим улучшается растворимость сополимера в некоторых органических растворителях и появляется способность к ограниченному набуханию в воде. [c.513]

    При введении смеси полиоксиэтиленгликолей, имеющей молекулярный вес от 2800 до 4000, в количестве 30%, образующийся блоксополимер еще сохраняет способность к кристаллизации, присущую линейным полиэфирам, причем температура плавления сополимера (рис. 149) остается высокой (256°). Однако благодаря присутствию полиоксиэтиленовых блоков в макромолекулах сополимер приобретает повышенную гигроскопичность, лучше адсорбирует краситель, [c.544]

    Стекловидная фаза цементного клинкера н6 является гомогенной по своей структуре и способность к кристаллизации у нее [c.105]

    В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических вешеств может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет н целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров. [c.239]

    Необходимо также, чтобы при температуре кристаллизации макромолекулы сохраняли определенную подвижность, необходимую для их перестройки. Известно, что кристаллизация происходит при температуре ниже температуры текучести Тг, но выше температуры стеклования Тс, т. е, для полимеров в интервале высокоэластического состояния. Следовательно, жесткоцепные полимеры, температура разлол ения которых лежит ниже Гс, вообще не способны кристаллизоваться и всегда находятся в аморфном состоянии. Примером таких полимеров может служить целлюлоза, В то же время слишком большая гибкость макромолекул также мешает кристаллизации, так как в этом случае образующиеся упорядоченные области сразу л<е нарушаются в результате флуктуаций. Следовательно, наибольшей способностью к кристаллизации обладают полимеры с цепями средней гибкости. [c.258]

    Известно, чтй ряд каучуков при серной вулканизации Дак)Т ненаполненные резины с высокой прочностью. Это —каучуки регулярного строения, способные к кристаллизации НК, синтетический полиизопрен с высоким содержанием г ис-1,4-звеньев, некоторые типы этилен-пропилен-диеновых каучуков, транс-полипентена-мер, полихлоропрен и др. При растяжении резин на основе этих каучуков образуются микрокристаллиты, которые играют роль полифункциональных узлов сетки по-видимому, их действие сходно с действием частиц активного наполнителя. Действительно, нарастание напряжения при растяжении резин, полученных на основе кристаллизующихся каучуков, происходит быстрее, чем при растяжении резин на основе аморфных каучуков, имеющих равную плотность узлов вулканизационной сетки [35]. [c.85]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]


    Оказывается, что расплавленные полимеры изотропны по отношению к процессу теплопроводности, поэтому значения коэффициентов теплопроводности, приведенные в табл. 1, применяются для всех направлений. Эксперименты на образцах из деформированных твердых полимеров [1] демонстрируют более высокие значения теплопроводности в направлении, параллельном деформации, по сравнению с теплопроводностью в направлении, перпендикулярпом деформации. Эти различия достаточно сильны в полимерах, способных к кристаллизации, где возможна разница на порядок величины в двух направлениях. Однако в стекловидных полимерах влияние ориентации на X [c.328]

    Свойства полимера зависят от взаимного расположения звеиЬ ев в макромолекуле, т. е. от ее конфигурации. Конфигурация определяет его способность к кристаллизации,эластические свойства полимера и др. [c.306]

    Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. При перегонке мазута в масляные фракции попадают парафины, имеющие состав i8 —Сз5. В гудронах концентрируются более высокоплавкие углеводороды Сза — Сбз- Количество возможных изомеров для этих углеводородов огромно. Так, уже гексадекан имеет 10 359 изомеров, кипящих в пределах 266—288,5 °С. Но, как показали многочисленные исследования, около половины всех твердых парафинов нефти имеет нормальное строение, а остальные представлены мало-разветвленными структурами с небольшим числом боковых цепей (в основном, метильные и этильные группы). В ряде нефтей обнаружено наличие непрерывного ряда углеводородов, начиная от Сп- Например, в битковской нефти найдены все углеводороды нормального строения от С17 до С42. Вместе с тем сейчас уже не подлежит сомнению, что наряду с углеводородами СпНгп+2 в нефтях имеются твердые, способные к кристаллизации органические вещества с циклической структурой. Однако эти углеводороды главным образом входят в состав не парафинов, а церезинов — смесей более высокомолекулярных и высокоплавких углеводородов, которые выделяются либо из остаточных нефтепродуктов, либо из горючего минерала озокерита. [c.24]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Можно предположить, что парафины и церезины образуют серию твердых растворов, а так как уже 0,3% церезина могут совершенно лишить способности к кристаллизации хорошо кристал-лизируюш ийся парафин, разделение подобных смесей, основанное на постепенном расплавлении, представляет извесгные технические трудности. [c.61]

    Многообразие предельных углеводородов и их производных привело к необходимости создания систематической номенклатуры для их точного обозначения. Вообще в химии применяются два способа выбора названий. Для обозначения различных соединений пользуются либо тривиальными названиями, отражающими какое-либо свойство вещества или нахождение его в природе, в частности окраску (например, Нильский голубой ), способность к кристаллизации ( кристаллический фиолетовый ), происхождение от производящего растения (например, мальвин — из мальвы), от исходного вещества ( жирные кислоты ), либо же применяют рациональное обозначение, т. е. такое название, которое дает однозначное представление о строении данного соединения. Первый из этих способов, обладающий некоторыми преимуигествами, особенно краткостью и наглядностью, оказывается недостаточным при необходимости различать большое число аналогично построенных соединений. Для рационального обозначения алифатических соединений служит так называемая Женевская номенклатура решение о введении ее было принято на Международном химическом конгрессе в Женеве в 1892 г., хотя она еще ранее в общих чертах была предложена Гофманом. [c.28]

    Полихлоропрен, образующийся на первой стадии полимеризации, представляет собой пластичный материал, растворимый в галоидопроизводных углеводородов. В цепи нитевидных макромолекул мономерные звенья сочетаются по схеме голова к хво-сту > —4-присоединение). Такое регулярное строение полимера придает ему способность к кристаллизации и облегчает процесс ориентации при растяжении. Структура линейных полимеров хлоропрена была установлена методом озонирования. При озонировании в реакцию вступают двойные связи, которые не принимали участия в первой стадии процесса полимеризации. При увланснении образующегося озонида происходит его разложение по местам присоединения озонидных групп. [c.280]

    В случае замещения водородов в метильных группах разнотипными атомами или группами полимер теряет способность к кристаллизации. При этом образуются прозрачные высокоупругие или эластичные аморфные полимеры с температурой размягчения в пределах 90—160°, в зависимости от строения боковых групп. [c.408]

    Соль 6-6 и (о-аминокапроповая кислота образуют гомополимеры, мало отличающиеся по структуре и свойствам, поэтому продукты их совместной поликонденсации при любых соотношениях исходных компонентов способны к кристаллизации. В случае совместной поликонде 1сации мономеров, свойства гомополимеров которых резко различны, получаются другие результаты. [c.533]

    Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика — порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [51, Келлера [6] и Шульца [7]. Наиболее вал<ная и неожиданная особенность монокристаллов состоит в наличии практи- [c.47]

    Некоторые жидкости после очистки от взвешенных примесей вовсе теряют способность к кристаллизации и при больших переохлаждениях переходят в твердое стеклоообразное состояние (например, салол). Обычно скорость кристаллизации определяется не самопроизвольным возникновением центров вследствие флуктуаций, а их образованием на частичках примесей. При этом центры кристаллизации в первую очередь возникают на таких инородных примесях, которые имеют наибольшее структурное сходство с зародышами кристаллизующегося вещества. [c.395]

    Узлами флуктуационной сетки могут быть ассоциаты сегментов макромолекул, образующие уплотнения с повышенной степенью ближнего порядка (см. гл. 7). В стереорегулярных полимерах, способных к кристаллизации, чти области ближнего порядка особенно велики. Вследствие этого в расплаве стсреорегулярногсГ полимера размеры макромолекуляриы.х клубков заметно больше, чем клубков атактических макромолекул. Клубки в расплаве сте-реорегулярного полимера более развернуты, чем а расплаве атактического некристаллизующегося полимера. При понижении температуры ниже 7 л ближний порядок в расплаве кристаллизующегося полимера возрастает настолько, что некоторые ассоциаты сегментов достигают критических размеров. Это значит, что в таких ассоциатах появляются элементы дальнего порядка и они становятся зародышами кристаллизации. [c.177]

    Т. Грем (1861 г.), изучая диффузию растворенных в воде веществ через мембраны, обнаружил, что такие органические вещества, как смолы. протеин, танин и ряд других, отличаются ничтожной скоростью диффузии. Такие веще1ства неспособны к кристаллизации, при упаривании их растворов образуются аморфные, хлопьевидные осадки. Они легко переходят в студнеобразное состояние. Поэтому Грем все подобные вещесива назвал коллоидами , т. е. клееподобными. Вещества же, свободно проходящие через мембраны, способные к кристаллизации и образующие истинные растворы, он назвал кристаллоидами . На ошибочность такой классификации вскоре же (1869 г.) указал наш соотечественник Н. Г. Борщев. В 1906 г. доцент Петербургского горного института П. П. Веймарн доказал, что любое вещество при создании соответствующих условий можно перевести в коллоидное состояние , а типичный с точки зрения Грема коллоид, например мыло, из спиртового раствора может кристаллизоваться. [c.222]

    Фенильные и боковые винильные группы придают макромолекуле асимметричность. Из-за нерегулярности структуры бутадиен-дтирольные каучуки не способны к кристаллизации. Меняя соотношение бутадиена и стирола, получают большое количество марок СКС с различными свойствами и разного назначения. Молекулярная масса 150 000—300 ООО. [c.466]

    В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов . Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. тозник-новение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, при слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек. [c.85]

    Применитольно к полимерам необходимо различать поняти кристаллический и способный к кристаллизации , поскольку многие полимеры ин при каких условиях неспособны к кристалли запин. В этом слу гае ггри охлаж/(ении они по мере уменьшения ин тенсивности теплового движения звеньев отвердевают без образо вания кристаллической решетки, т е. стеклуются [c.132]


Смотреть страницы где упоминается термин Способность к кристаллизации: [c.120]    [c.35]    [c.406]    [c.424]    [c.513]    [c.533]    [c.45]    [c.230]    [c.275]    [c.105]    [c.92]    [c.126]    [c.184]    [c.8]    [c.322]    [c.709]    [c.35]    [c.132]    [c.217]   
Смотреть главы в:

Равнозвенность полимеров -> Способность к кристаллизации

Полимеры -> Способность к кристаллизации


Полимеры (1990) -- [ c.140 , c.143 , c.145 , c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние химического строения ароматических полиамидов на их способность к кристаллизации

Другие факторы, влияющие на способность к кристаллизации

Карбин способность к кристаллизации

Определение способности стекла и кристаллизации

Оценка микроструктуры бутадиеновых каучуков регулярного строения по их способности к кристаллизации. Г. Е. Новикова, А. И. Марей, Альтшулер

Поливинилацетат способность к кристаллизации

Поливинилиденхлорид способность к кристаллизации

Поливинилфторид способность к кристаллизации

Поливинилхлорид способность к кристаллизации

Полигетероарилены, способность к кристаллизации

Полимеры способность к кристаллизации

Полиметилметакрилат способность к кристаллизации

Полипропилен способность к кристаллизации

Полистирол способность к кристаллизации

Политетрафторэтилен способность к кристаллизации

Политрифторхлорэтилен, способность к кристаллизации

Полиэтилен способность к кристаллизации

Полиэфиры способность к кристаллизации

Сополимеры способность к кристаллизации

Способность к кристаллизации и строение

Способность к кристаллизации и химическое строение полимеров

Способность расплавов термопластов к ориентации и кристаллизации

Структурная регулярность и способность к кристаллизации

оке иди фенил фл у орен, пол иар платы, способность к кристаллизации



© 2024 chem21.info Реклама на сайте