Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислотные белках

    Аминокислоты, содержащие полярные группы, которые достаточно сильно взаимодействуют с водой, называют гидрофильными аминокислотами (Asp, Gly, Lis, His, Arg, Gly, Ser, Thr). Такие аминокислотные звенья обычно располагаются на поверхности частиц белка. Аминокислоты, имеющие неполярные боковые заместители, не несут парциальных зарядов и не сольватируются заметно водой. Они преимущественно располагаются внутри частиц белка, сводя тем самым к минимуму их соприкосновение с водой. Это гидрофобные аминокислоты. [c.337]


    Однако для белков такое соотношение не обязательно выполняется, поскольку они могут связывать и другие, помимо протонов, ионы, которые вносят вклад в общий баланс зарядов (при условии нейтральности молекулы белка). Можно ожидать, что белки в изоэлектрической точке обладают меньшей растворимостью, чем при меньших или больших значениях pH, и это действительно имеет место. Поскольку в изоэлектрической точке молекула белка не обладает избыточным зарядом, в этих условиях белок легче агрегирует и осаждается. Далее, поскольку аминокислотный состав разных белков различен, для каждого белка существует характеристическое значение р/е. Это свойство является основой метода очистки белков путем изоэлектрического осаждения (осаждения в изоэлектрических условиях) pH смеси белков доводится до значения, равного значению р/ искомого белка, так что последний осаждается из смеси. Значение р/г аминокислот с нейтральной боковой цепью равно 5,6 0,5 для аминокислот, содержащих кислые группы, р/ ниже, а для аминокислот с основными группами в боковых цепях — выше. В то же время для белков р/ может меняться от О до И. Вывод формул для расчета р/ аминокислот имеется в большинстве учебников биохимии. [c.32]

    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]


    Главное различие между цепями белка и полиэтилена или полиэтилен-терефталата (дакрона) заключается в том, что в молекуле белка не все боковые группы одинаковы. У фибриллярных белков определенная повторяющаяся последовательность боковых групп придает конкретному белку-кератину или коллагену-вполне конкретные механические свойства. Глобулярные белки имеют еще более сложное строение. Эти молекулы обычно содержат от 100 до 500 аминокисло г, полимеризованных в одну длинную цепь, и полная последовательность аминокислотных остатков в каждой молекуле одного глобулярного белка одинакова. Эти остатки могут быть углеводородными, кислыми, основными, нейтральными или полярными. Свертывание белковой цепи в компактную глобулярную моле- [c.313]

    Следующий шаг состоял в том, чтобы подкрепить этот труд реальным синтезом заданной молекулы белка. В 1954 г. американец Винсент Дю-Виньо (1901—1978) положил начало такому синтезу. Он получил окситоцин — пептид, состоящий всего лишь из восьми аминокислотных остатков. Однако с более сложными молекулами дело пошло быстрее, и вскоре были синтезированы цепи, содержащие несколько десятков аминокислот. К 1963 г. в лабораторных условиях были получены полипептидные цепи инсулина. [c.130]

    Развернутые синтетические полипептиды. Аддитивность их парциальной сжимаемости анализировалась в работах [161, 196]. При этом показано, что эксперимент дает либо совпада-юш,ие по абсолютной величине, либо заниженные (но не более чем на 30%) значения гидратационного эффекта относительно аддитивного расчета. Это иллюстрирует рис. 3.12, на котором приведена шкала удельных парциальных сжимаемостей развернутых полипептидов и белков при 25°С [191]. Аминокислотные остатки и полипептиды попадают в область отрицательных [c.59]

    Первичная структура этих белков варьируется в определенных пределах и зависит от природы шелкопряда, диеты, сроков выкормки шелковичных червей и других биологических факторов (см. табл. 6.8). Наибольшую массовую долю в макромолекуле фиброина занимают звенья Gly, Ala, Туг, Ser. Кроме того, в его состав входит небольшое количество (<1%) звеньев ys. Полипептидные цепи фиброина включают гидрофильные и гидрофобные аминокислотные звенья в соотношении 6,3 1. Последовательность аминокислотных звеньев в кристаллических областях полимерного субстрата может быть представлена в виде [c.375]

    Вторичная структура белковой молекулы - это конформация участков полипептидной цепи. Линейный полимер, первичная структура которого включает много шарнирных фупп и взаимодействие между боковыми радикалами в котором не очень велико, образует статистический клубок. Он не обладает определенной трехмерной структурой или формой, так как она постоянно изменяется под действием микроброуновского движения. Однако вследствие взаимодействия боковых заместителей аминокислотных звеньев макромолекулы белка способны свертываться в более плотный, чем статистический, клубок, в результате чего возникает компактная глобулярная структура белковой макромолекулы. [c.344]

    Для идентификации белков, в том числе и фибриллярных, используется ряд специфических реакций, позволяющих оценить содержание в полимерном субстрате как амидных связей, так и различных радикалов у С -атомов аминокислотных звеньев. [c.354]

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]

    Полипептидные цепи способны образовывать а-спиральную конформацию (рис. 6.10). Такая конформация характеризуется максимальным насыщением водородных связей вдоль оси спирали. Боковые заместители аминокислотных звеньев направлены наружу и находятся вне спирали. Дополнительным фактором, фиксирующим а-спиральную конформацию макромолекулы белка, является образование внутрицепных дисульфидных (цистиновых), сложноэфирных и солевых связей. Возникновение двойных и тройных спиралей обусловлено интенсивными межмолекулярными взаимодействиями между ними. Такие спиральные одно- и многоцепочечные макромолекулы являются примером стержнеобразных жестких цепей, характеризующихся /ф < 0,63. [c.344]

    Правилами ШРАС/ШВ [12] приняты английские трехбуквенные сокращения тривиальных названий аминокислот, начинающиеся с прописной буквы Gly, Ala, Туг и т. д. (применяемые либо для всей молекулы аминокислоты, либо для ее радикала) особенно часто такие сокращения применяются для описания аминокислотной последовательности в пептидах и белках. Разрешена также [13] и однобуквенная система сокращений, но она применяется гораздо реже. Имеются также правила номенклатуры, касающиеся часто применяемых сокращений для синтетических пептидов [14], для синтетических модификаций природных пептидов [15], пептидных гормонов [16] и белков, содержащих железо и серу [17]. [c.187]


    Полимерные цепи, содержащие до 100 аминокислотных звеньев, соединенных пептидными связями, называются полипептидами. К ним обычно относят фракции белков с < 10", способные в процессе осмоса проникать через целлофановую мембрану. Собственно белки неспособны проникать через нее. [c.337]

    Величина [ti] вблизи изоэлектрической точки для белков, макромолекулы которых содержат большое количество гидрофильных аминокислотных звеньев, оказывается существенно большей, нежели в случае, когда полипептидные цепи построены преимушественно из гидрофобных аминокислотных остатков (при условии, что молекулярные массы обоих образцов белков одинаковы). Объяснить этот феномен. [c.393]

    Многие боковые радикалы аминокислотных звеньев белков (тиол, дисульфид, тиоэфир, имидазол, фенилиндол) способны окисляться, причем механизмы химических превращений, происходящих в результате этих реакций, весьма разнообразны. [c.364]

    В белке содержится X % аминокислотного остатка определенного строения. Чему равна наименьшая молекулярная масса белка, если в нем содержится 1) 17% Gly 2) 12,6% Ala 3) 8,1% Pro 4) 0,4% Phe  [c.393]

    Какими реакциями можно идентифицировать наличие в белке серосодержащих аминокислотных звеньев  [c.394]

    Виток а-спирали фибриллярного белка (3.6 аминокислот-ньгх остатков) измерен параллельно ее оси. Его длина равна 0,5 нм. Сколько аминокислотных остатков нужно добавить в секунду к каждой а-спирали волокна кератина, если человеческий волос вырастает в год на 15,24 см  [c.119]

    Среда активного центра отличается, как правило, сильно развитой микрогетерогенностью. Это связано с тем, что в образовании поверхностного слоя белков принимают участие не только заряженные и полярные аминокислотные остатки (которым, поскольку они сильно сольватированы, термодинамически выгодно контактировать с водой), но также частично и аполярные (углеводородные) боковые группы. Так, например, для а-химотрипсина методом рентгеноструктурного анализа [c.20]

    Белки являются полиамфолитами, т. е. они содержат как положительно, так и отрицательно заряженные ионогенные группы. Для всех полиамфолитов характерна зависимость их заряда от pH при низких pH они заряжены положительно, при высоких - отрицательно. Для каждого белка существуют такие значения рР1, при которых суммарный заряд молекулы равен нулю. Это значение pH определяется как изоэлектрическая точка. Очевидно, что изоэлектрическая точка полипептидной цепи определяется природой входящих в нее аминокислотных звеньев (см. табл. 6.7). Следует подчеркнуть, что все функции белков реализуются только в присутствии воды, т. е. в растворе или в набухшем состоянии. [c.340]

    Таким образом, первоначальное количество информации низшего уровня (ДНК) уменьшается на более высоком уровне (белок). В данном случае это обусловлено особенностью триплетного кода живых организмов на планете Земля один и тот же аминокислотный остаток кодируется разными кодонами, причем общее число кодонов 4 = 64 больше числа аминокислот (их всего 20). На следующем уровне возможны замены некоторых аминокислот другими без существенных изменений свойств белка. Тем самым число действительно незаменимых аминокислот уменьшается (/V < 20), а количество информации /3 на этом уровне соответственно падает  [c.401]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    На языке термодинамики это означает, что для молекулы белка существует лишь одно состояние (или ограниченное число состояний), когда свободная энергия как функция пространственного строения (и, следовательно, как функция нековалентных взаимодействий между аминокислотными остатками полипептидной цепи обнаруживает минимум. [c.12]

    НОГО субстрата с атомом 2п, молекулой воды и аминокислотными остатками белка (С1и-270 и Туг-248) (стрелкой показано направление нуклеофильной атаки карбонильной группы субстрата) [21]. [c.20]

    Многие белки содержат также некоторое количество ковалентных связей, сшивающих цепи. Наиболее часто это - дисульфидные связи типа показанных на рис. УП.9,г. Дисульфидные мостики образуются между остатками цистеина (аминокислотный остаток - это та часть аминокислоты, которая присутствует в бепкотюй цепи). Группа К цистеина содержит группу -8-Н. Два остатка цистеина могут реагировать этими группами, теряя водород и образуя дисульфидную связь  [c.455]

    По данным работ [161. 196]. Горизонтальной пунктирной линией вверху обозначена собственная удельная сжимаемость глобулы (средняя по всем глобулярным белкам). —эксперимент. О — аддитивный расчет. Стрелки, направленные вниз, означают величину гидратационного вклада в К 1М для глобулярных белков она отсчитывается от значения сжимаемости глобулы, для полностью развернутых цепей — от нуля, поскольку в этом случае собственная сжимаемость молекулы отражает ничтожно малую сжимаемость вандер-ваальсовых объемов аминокислотных остатков. / — рибонуклеаза 2 — лизоцим 3 — миоглобин — полиглутаминовая кислота 5 — поли-0,1-аланин — коллаген нативный [161, 202] 7 — коллаген деструктурированный (желатина) [200] [c.59]

    Глобулярные белки (сферопротешы) Полипептидные цепи, образующие клубки меньшая часть их состоит из простых аминокислотных остатков в большинстве случаев растворимы в воде [c.211]

    Боковые заместители аминокислотных звеньев направлены либо внутрь, либо к поверхности белковой молекулы. Неполярные боковые радикалы Val, Пе и Leu разветвлены (см. табл 6.7), что Офаничивает их внутреннюю подвижность. Подвижность ароматических циклов в Phe незначительна. Неполярный Pro является специфическим остатком, образующим циклическое звено в полимерной цепи, в результате чего конформационные возможности макромолекулы белка офаничиваются. К тому же Pro фиксирует двухфанный угол Ф, между N и С в узком интервале 20 фад. Try характерен самым объемным боковым радикалом. Его небольшая полярность обусловлена индольным гетероциклом. Следует отметить, что все самые крупные боковые радикалы Val, Ile, Leu, Phe, Pro, Try, a также Met располагаются преимущественно внутри глобулизированной белковой молекулы. [c.341]

    Огромное чйсло взаимных сочетаний а-аминокислотных звеньев в полипептидной цепи, обусловливаюших первичную структуру белка, предопределяет возможность сушествования очень большого разнообразия белков и специфичность их функций. Однако первичная структура белка, обладающая специфическими функциональными свойствами (например, фибриллярные белки), в процессе биосинтеза воспроизводится достаточно точно, что обусловливает возможность жизнедеятельности организмов. Ранее уже отмечалось, что конформационные переходы в полипептидной цепи могут осуществляться в основном в результате вращения вокруг СН2-группы Gly, ифающей роль шарнира. [c.344]

    Существуют нуклеиновые кисло1ы двух типов более стабильная дезоксирибонуклеиновая кислота (ДНК), являющаяся хранителем генетической информации менее стабильная рибонуклеиновая кислота (РНК), взаимодействующая с ДНК. Она выполняет роль матрицы, переносящей И11формацию об определенной последовательности аминокислотных звеньев в полипептидной цепи с макромолекул ДНК с помощью так называемого расомного механизма . Описание особенностей протекания процесса синтеза белка в живых организмах выходит за рамки этого пособия. [c.349]

    Натуральный шелк представляет собой нить, полученную размоткой коконов шелкопряда в условиях интенсивного набухания при гидротермических обработках. Получаемая таким образом нить характеризуется сложным морфологическим строением два фиброиновых стержня соединяются в единую нить с помощью серициновой прослойки. После дополнительного удаления серицина до содержания его 20-25% коконная нить превращается в шелк-сырец, а при более глубокой отмывке (до 4-5%) - в натуральный шелк. В зависимости от своих функций (формирования армирующей основы шелка - фиброиновых стержней или обеспечения связи между ними) полипептидные цепи имеют первичную структуру, включающую большее (в фиброине) или меньшее (в серицине) количество гидрофобных аминокислотных звеньев, но четкое различие между этими белками отсутствует (рис.6.12). Связь между ними обеспечивается проходными цепями, дисульфидными и сложноэфирными мостиками, межмолекулярными водородными связями, а также через небелковые фрагменты, например через монозы. [c.376]

    Генетическая информация передается от родительской клетки к дочерней путем репликации (синтеза) ДНК- Генетическая информация сохраняется в ДНК до тех пор, пока не понадобится, а затем превращается в инструкцию по синтезу белка специфической последовательности в процессе транскрипции. Генетическая инструкция переписывается на полимерную молекулу РНК (мРНК). Она в свою очередь взаимодействует с соответствующими специфическими амииоацил-тРНК, в результате чего происходит последовательное присоединение аминокислот. Перевод генетической информации из РНК в специфическую аминокислотную последовательность называется трансляцией. [c.108]

    Белки (аминокислотные полимеры) и нуклеиновые кислоты (нуклеотидные полимеры) — это основа жизни. Ферменты — это белки, катализирующие химические реакции, необходимые для процессов жизнедеятельности, тогда как нуклеиновые кислоты служат банком данных — хранилищем генетической информации, сосредоточенной в клеточном ядре. В заключение этой главы мы кратко рассмотрим происхождение этих биополимеров. С этой целью сформулируем некоторые фундаментальные вопросы, на которых следует ниже остановиться. С чего начались химические процессы, необходимые для поддержания жизни, или, другими словами, каким образом происходило образование пептидных связей в пребиотическпй период Как появились макромолекулы, имеющие важное биологическое значение Чем вызвана асимметрия и хиральность органическ гх молекул На некоторые из этих вопросов хотя бы частично сумели ответить химики, пытавшиеся воспроизвести условия, которые существовали в примитивной атмосфере Земли того времени. [c.181]

    Лишь недавно предложена [50] биоорганическая модель, которая может объяснить код , описывающий специфическое взаимодействие полинуклеотидов и белков. При этом постулировано существование примитивного гибридного полимера, пли сополимера, содержащего рибонуклеиновую цепь (РНК), в 2 -поло-жениях которой ковалентно присоединены аминокислотные остатки. Матрица , организованная таким образом, могла бы отвечать за специфическое полипеитид-нолинуклеотидное узнавание, положившее начало современному генетическому коду. [c.185]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Первьш белком, структуру которого задалось расшифровать, был гормон инсулин, регулирующий сахарный обмен в организме. Десять лет затратил на эту работу английский биохимик Фредерик Сэнгер, за что был удостоен в 1958 г. Нобелевской премии. Он, в частности, установил, что формула инсулина а молекула его состоит из двух цепей (одна содержит 21, а другая - 30 аминокислотных остатков), в определенной последовательности соединенных между собой -S-S- связями. [c.269]

    Между различными участками спиральной цепи белков (кислородом карбонильных групп и водородом аминогрупп) возникают водородные связи. Именно наличие большого количества водородных связей в полипептрцщой цепи делает возможным образование спирали и стабилизирует ее. Лршейное расстояние вдоль оси спирали между двумя однородньши атомными групшфовками полипептида составляет 1,5 А. Один виток спирали включает 3,6 единиц аминокислотных остатков. Эт о соответствует линейному расстоянию между витками спирали вдоль ее оси, равному 5,4 А. [c.270]

    Ферменты - -то биоката.чи тторы, образующиеся в клетке и представляющие собой либо простьк белки, либо сложные, содержащие не аминокислотные компоненты. [c.274]

    Белки чрезвычайно разнообразны. При переходе от одного белка к другому не только и зменяется качественный и количественный аминокислотный состав, но наблюдаются также большие различия в ф изико-химических свойствах. Многие белки, подобно альбуминам, образуют в воде коллоидные растворы другие, например глобулины, не растворяются в воде, но растворимы в растворах нейтральных солей (поваренная соль и др.) кератин, эластин, фиброин и аналогичные им белки характеризуются полной нерастворимостью. Между белками, образующими коллоидные растворы, в свою очередь, существуют различия в отношении способности к высаливанию и осаждению. Эти различия в растворимости используются для разделения белков наряду с описанными [c.395]

    Количество необходимой информации увеличится, если учесть уникальность расположения аминокислотных осталхов в белках. В теле взрослого человека содержится 150 г ДНК, что соответствует [c.400]


Смотреть страницы где упоминается термин Аминокислотные белках: [c.187]    [c.227]    [c.345]    [c.54]    [c.144]    [c.206]    [c.219]    [c.345]    [c.252]    [c.978]    [c.21]   
Биохимия Т.3 Изд.2 (1985) -- [ c.7 , c.26 , c.37 , c.38 , c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотная последовательность белка и анализ его функций

Аминокислотные и конформация белка

Аминокислотные остатки в нативных белках

Аминокислотные последовательности в гомологичных белках

Аминокислотный состав ферментов и первичная структура белка

Анализ аминокислотного состава. Цветные реакции иа белки

Белки Протеины аминокислотный состав

Белки алкилирование по аминокислотному состав

Белки аминокислотная последовательность

Белки аминокислотная трубчатые

Белки аминокислотный анализ

Белки аминокислотный в бесклеточной системе

Белки аминокислотный вторичная

Белки аминокислотный ионные и неполярные гидрофобные

Белки аминокислотный мембранах

Белки аминокислотный органических растворителя

Белки аминокислотный очистки

Белки аминокислотный пептидные

Белки аминокислотный регуляция

Белки аминокислотный состав

Белки аминокислотный у бактерий

Белки анализ аминокислотной последовательности

Белки молока, аминокислотный соста

Белки определение аминокислотного

Белки определение аминокислотного состава

Белки, аминокислотная последовательность нуклеиновыми кислотам

Белки, аминокислотная последовательность остатки

Белки, аминокислотный соста

Белки, аминокислотный состав жирными кислотами

Белки, аминокислотный состав ипритом

Белки, аминокислотный состав кислотами и основаниям

Белки, аминокислотный состав минимальные

Белки, аминокислотный состав недокисью углерода

Белки, аминокислотный состав неорганическими ионами

Белки, аминокислотный состав реакциях иммунитета

Белки, аминокислотный состав тиоцианатом

Белки, аминокислотный состав формальдегидом

Влияние внешней среды на обмен веществ. Питание Сопоставление аминокислотного состава пищевых белков (яичного белка и желатины)

Критерии фиксации аминокислотных замен в белках

Нуклеотидная ДНК и аминокислотная последовательность в белках

Общий белок и аминокислотный состав продуктов (Я. М. Скури Список использованной литературы

Пепсин, аминокислотный состав гидролиз белка

Плотность упаковки аминокислотных остатков в свернутых молекулах белка

Семян белки, аминокислотный состав

Семян белки, аминокислотный состав групп

Соколовская. Аминокислотный состав белка в здоровых и пораженных филлоксерой корнях винограда

Ферментативные белки, аминокислотный состав



© 2025 chem21.info Реклама на сайте