Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пищевые каучуки

    После заполнения емкости к латексу добавляют 2—3% наф-тама-2 для стабилизации полимера. В случае выпуска пищевого каучука марки СКН-26 П в латекс вводят 1—2% дисперсии П-23 (2, 4, 6-три-трет-бутилфенол). [c.256]

    Тип стабилизатора. Наряду с каучуками содержащими по 0,5—0,75% неозона Д и стеариновой кислоты, вырабатываются специальные пищевые каучуки, заправленные 2% вазелинового масла (обозначают буквой Щ ). [c.57]


    Технический гидрохлорид природного каучука прочен, растяжим, имеет хорошую прочность на разрыв, влагонепроницаем, устойчив против воздействия масел или смазок. Он легко уплотняется при нагревании до 105—130°. Как упоминалось выше, этот продукт широко применяется для упаковки пищевых продуктов. Гидрохлорид каучука можно дегидро-хлорировать и нагреванием ого при 125—145° с пиридином, пиперидином, анилином, предпочтительно и присутствии растворителя. [c.222]

    Высокая чистота, отсутствие запаха и достаточная стабильность при введении неокрашивающих антиоксидантов делают эти каучуки незаменимыми при производстве большинства пищевых марок материалов, ударопрочного полистирола и др. [c.189]

    Растительное и животное сырье уже вытеснено в основном минеральным и синтетическим в производстве красителей, лаков, лекарственных веществ, душистых веществ, большинства пластических масс и ряда других материалов. Вытесняется растительное сырье веществами, полученными из природных газов, нефти и угля, в производстве каучука, химического волокна, спиртов, органических кислот, моющих средств. На очереди стоит получение из непищевых веществ основных продуктов питания крахмала и сахара и, наконец, синтез составных частей белков. Ныне уже получают биохимическим превращением отходов нефтеперерабатывающей и целлюлозно-бумажной промышлеиности белковые дрожжи для кормления скота. Замена пищевого сырья — растительного и животного — минеральным ведет к значительному удешевлению сырья. Умеща-шение же стоимости сырья значительно снижает основной производственный показатель — себестоимость химической продукции. [c.23]

    В Советском Союзе нефтехимическое производство в промышленном масштабе начало развиваться в период 1932—1936 гг., когда были пущены установки для получения синтетического каучука и этилового спирта. Для производства этилового спирта ранее использовались зерна или картофель. Чтобы удовлетворить потребность в спирте, расходовалось несколько миллионов тонн этих пищевых продуктов. Этиловый спирт нужен не только для приготовления водки, виски и других спиртных напитков, он оказался необходимым для получения синтетического каучука и иных продуктов. [c.322]

    В начальный период производства синтетического каучука в нашей стране исходным сырьем служил этиловый спирт, полученный из пищевых продуктов. Но уже в 1950 г. синтез бутадиенового каучука, получаемого по методу С. В. Лебедева, стал проводиться на базе этилового спирта нефтехимического производства. В 1958 г. было получено 200 тыс. т, а в 1962 г. — 600 тыс. тп синтетического этилового спирта. [c.322]


    Поскольку в некоторых странах этиловый спирт нефтяного происхождения дешевле спирта, полученного из пиш,евого сырья (гл. 8), производство дивинила из этилового спирта можно считать процессом, относящимся к промышленности химической переработки нефти. Однако во время войны этиловый спирт, потребляемый промышленностью синтетического каучука в Советском Союзе и в США, почти полностью получался из пищевого сырья. [c.217]

    В СССР интерес к гидролизу древесины особенно возрос примерно с 1930 г., когда с развитием промышленности синтетического каучука по методу Лебедева сильно увеличилась потребность в этиловом спирте, который получали исключительно из пищевого сырья (картофель, рожь и т. д.). Опыт показал, что каждый миллион литров спирта, полученного гидролизом древесины (непищевое сырье), освобождает около 3000 т зерна или 10 ООО т картофеля и, следовательно около 600 га посевной площади. Для производства же 1 млн. л спирта из древесины требуется около 10 ООО т опилок с влажностью 45%, что может обеспечить годичная работа одного лесопильного завода средней производительности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. [c.538]

    Задача получения каучуков из нефтяного сырья возникла еще до войны, но практическое ее решение стало возможным в 1953— 1958 гг., когда были введены заводы по производству синтетического этилового спирта. В 1964—1965 гг. использование пищевого сырья для производства каучуков было полностью прекращено. В результате только за 1958—1965 гг. было сэкономлено около 12,2 млн. т зерна. [c.32]

    Достижения в области переработки нефти и нефтехимии позволили организовать комплексное использование углеводородного сырья, резко снизить расходование продовольственного сырья для технических нужд. В нашей стране полностью прекращено потребление зерна и картофеля для производства этиленового спирта, идущего на технические нужды. Значительное высвобождение животных и растительных пищевых жиров обеспечено развитием и совершенствованием процессов производства синтетических жирных кислот, спиртов и поверхностноактивных веществ на базе нефтяного сырья. Примером эффективного использования химических продуктов и материалов для производственных целей взамен пищевого сырья стало использование в лакокрасочной промышленности нефтеполимерных смол и низкомолекулярных каучуков. Вовлечение заменителей в производство лакокрасочной продукции высвобождает ежегодно около 50 тыс. т. растительных масел. С 1970 по 1985 г. расход хлопчатобумажных материалов на предприятиях отрасли снизился с 91 до 47,1%. Это позволило высвободить 42,7 тыс. т. хлопка и повысить средний срок службы конвейерных лент с 32 до 54 месяцев, клиновых вентиляторных ремней на автомобилях — с 25 до 100—150 тыс. км пробега. [c.11]

    Использование нефтяных и природных газов, химического сырья и нефтепродуктов для производства синтетического каучука, спирта, моющих средств и других химических продуктов в целях значительного сокращения расхода зерна, растительных масел и других видов пищевого сырья является одной из важнейших задач промышленности. [c.5]

    Трудно назвать область народного хозяйства, где бы не применялся этиловый спирт. Прежде всего он используется в химической промышленности — в производстве уксусной кислоты, красителей, синтетического каучука, фотопленки, пороха, пластмасс и т. д. Кроме того, этот спирт является прекрасным растворителем (для органической химии он имеет такое же значение, как вода для неорганической химии). Применяется этиловый спирт в медицинской и пищевой промышленности, в парфюмерии. [c.112]

    В настоящее время каталитические процессы широко используются в промышленности. Сейчас даже трудно назвать крупное производство химической промышленности, где бы не применялись катализаторы. Получение спиртов, альдегидов, аммиака, серной и азотной кислот, переработка каменного угля в жидкое топливо, процессы крекинга нефти при получении моторных топлив, синтез каучука, производство пластмасс, красителей, получение маргарина и других пищевых продуктов — вот далеко не полный перечень процессов, где широко используются катализаторы. В ряде случаев за счет применения катализаторов удается значительно снизить температуру проведения реакции, что позволяет уменьшать тепловые затраты и использовать менее жаростойкую аппаратуру, а также устранять нежелательные побочные реакции. [c.161]

    А. нежелательна, т. к. приводит к порче пищевых продуктов, осмолению масел и бензинов, старению каучука, ржавлению железа. Для предотвращения А. добавляют антиокислители, металл покрывают защитной пленкой. [c.35]


    Из гидролизатов можно получать пищевую глюкозу, техническую ксилозу, ксилит, сорбит, глицерин, этиленгликоль, фурфурол, этиловый и бутиловый спирты, ацетон, белково-витаминные дрожжи и другие ценные продукты. Наиболее перспективным направлением переработки моноз является каталитическое превращение их в полупродукты для органического синтеза, а также биосинтез белковых веществ, витаминов и антибиотиков. Из лигнина получают фенолы, ацетат кальция, активированный уголь, бензол, толуол наполнители для каучуков. [c.75]

    Из других природных эмульгаторов хорошо изучены сапонины и белки — альбумин, казеин и др. Они стабилизируют эмульсии М/В. Стабилизирующее действие белков объясняется их адсорбцией на границе раздела фаз с образованием прочных защитных слоев. В качестве стабилизаторов эмульсий В/М применяют высокомолекулярные соединения, растворимые в масляной фазе, например каучук. В пищевой и фармацевтической промышленности для получения эмульсий В/М применяют стеарат и пальмитат сахарозы, а также полиоксиэтилированные сложные эфиры. [c.184]

    При неправильном складском хранении (близком соприкосновении) возможны случаи загрязнения пищевого каучука неозоном Д , который может попасть в пего в результате диффузии из непищевого СКБ. Такое загрязнение легко обнаружить, если просматривать каучуки под ультрафиолетовыми лучами. Очень показателен следующий случай. Для укупорки флаконов с раствором инсулина ) на ]У1осковский завод эндокринных препаратов поступили пробки двух рецептов. Пробки были перепутаны, вследствие чего значительная часть флаконов с раствором инсулина оказалась укупоренной неподходящими пробками, а йто неминуемо должно было привести к порче инсулина в них. Стоял вопрос об изъятии всей партии флаконов, укупоренных этими пробками. Благодаря люминесцентному анализу оказалось возможным в кратчайший срок и без особой трудности разбраковать всю продукцию, так как пробки одной рецептуры флуоресцировали сиреневым светом, а другой — желтым. [c.257]

    Гидрохлорид природного каучука был получен действием жидкого хлористого водорода и последующим нагреванием под давлением пропусканием газообразного хлористого водорода в раствор вальцованного каучука подвешиванием тонких пластин каучука в емкости, заполненные газообразным хлористым водородом. Газообразный хлористый водород можно также пропускать в латекс природного каучука при условии, что латекс предварительно стабилизирован путем добавки к нему катионного мыла, типа фиксанол , т. е. бромида цетилпиридина, или же неионного мыла типа эмульфор О , олеилалкоголь-полиэтиленоксид.. Гидрохлорид природного каучука, используемый для производства прозрачных пленок, применяемых для упаковки пищевых продуктов, гидро-хлорируется в бензольном растворе, затем смесь оставляется на некоторое время для созревания избыток хлористого водорода нейтрализуется. Теоретически вычисленное содержание хлора — 33,9%, но продукты с желательными свойствами получаются уже при содержании в них хлора в пределах 28—30%. Если реакция проходит слишком далеко, продукт становится нерастворимым. [c.222]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Бутадиеновые каучуки, получаемые в отсутствие растворителя. В зависимости от способа полимеризации и условий дальнейшей переработки эти каучуки подразделяются следующим образом с — стержневой (только СКБ), б — бесстержневой, р — рафинированный, в — вальцованный, Д — диэлектрической, Щ — пищевой, а также П — содержащий полидиены. Помимо этого марки каучука отличаются пластичностью с интервалом в 0,05. Всего в СССР выпускается 37 торговых марок СКБ, СКВ и СКБМ. [c.186]

    Теплостойкость вулканизатов бутилкаучука позволяет широко использовать бутилкаучуки, в основном каучуки с непредельнсктью выше 1,6% (мол.), в производстве паропроводных рукавов и транспортерных лент, эксплуатируемых при высо>ких температурах. Химическая стойкость бутилкаучуков обусловливает его применение для обкладки валов, гуммирования химической аппаратуры, изготовления кислотостойких перчаток, рукавов для перекачивания агрессивных агентов. Благодаря сочетанию химической стойкости, газонепроницаемости, ат.мосферо- и водостойкости бутилкаучук используют для изготовления прорезиненных тканей различного назначения. Стойкость вулканизатов из бутилкаучука к набуханию в молоке и пищевых жирах позволяет использовать его для изготовления деталей доильных аппаратов и других резиновых изделий, соприкасающихся при эксплуатации с пищевыми продуктами. [c.352]

    Успехи органической химии позволяют производить ряд ценных органических продуктов из самого разнообразного сырья. Так, напрнмер, этиловый спирт, используемый в громадных количествах в производстве синтетического каучука, искусственных волокон, илас ическпх масс, взрывчатых веществ, эфиров и т. п., можно получать из пищевых продуктов (зерна, картофеля, сахарной свеклы), гидролизом древесины и гидратацией этилена. Этилен же, в свою очередь, получается при химической переработке природных газов, нефти и других видов топлива. Вначале пищевое сырье в производстве спирта стала вытеснять древесина. Из 1 т древесины при гидролизе получается около 160 кг этилового спирта, что заменяет 1,6 т картофеля или 0,6 т зерна. Производство гидролизного спирта обходится дещевле, чем из пищевого сырья. При комплексной химической переработке древесина используется вместо пищевого сырья также в производстве глицерина, кормового сахара, кормовых дрожжей, уксусной, лимонной и молочной кислот и других продуктов. Особенно быстро развивается производство синтетического спирта гидратацией этилена таким образом, растительное сырье вытесняется минеральным. Себестоимость синтетического спирта из нефтяных газов в три раза ниже, чем из пищевого сырья. Интенсивно развивается также производство синтетического каучука из бутан-бутиленовой фракции попутных нефтяных газов, поэтому этиловый спирт потерял доминирующее значение в производстве. синтетического каучука. Из продуктов переработки газов и нефти ныне вырабатывают также уксусную кислоту, глицерин и жиры для производства моющих средств. При этом экономятся громадные количества пищевого сырья и получается более дешевая продукция. [c.23]

    Синтетические каучуки. Возможность производства синтетических каучукоподобных материалов начала изучаться в нашей стране еще в1912—1917 гг. В основу разработок были положены исследования С.В. Лебедева, И.И. Остромысленского, Б.В. Бызова. Однако только в 1931 году на опытном производстве была получена первая партия синтетического каучука в 265 кг на основе бутадиена, синтезированного из пищевого этанола по методу С.В. Лебедева. В том же году опытная партия бутадиенового каучука была произведена из бутадиена, полученного по методу Б. В. Бызова. Несмотря на более высокую экономичность этого метода, вследствие больших расходных коэффициентов по нефти за основу промышленного производства синтетического бутадиенового каучука был принят способ С.В. Лебедева. [c.384]

    В 1928 году был получен первый промышленный образец натрий-бутадиенового каучука. Первый в мире завод синтетического каучука был пущен в 1932 году, а Лабораторию синтетического каучука некоторое время спустя преобразовали во Всесоюзный научно-исследовате.пьский институт синтетического каучука (ВНИИСК). В 1935 году, после смерти академика С. В. Лебедева, институту было присвоено имя его основателя. Значение этого международного конкурса не ограничивается созданием промышленной технологии синтеза каучука по Лебедеву. Группа Лебедева достойно победила в конкуренции равных. Но недостатком пред-.-лс-женной ею технологии было то, что мономер—1,3-бутадиен — получали одноступенчатой конверсией этилового спирта. До 50-х годов в нашей стране промышленной основой, сырьевой базой подобного производства мог быть только пищевой этанол, производимый ферментацией зерна, картофеля, свеклы. Правда, после окончательного усовершенствования катализатора Лебедева расход пищевого сырья сократился вдвое. [c.123]

    Особенно эффективно используются различные поверхностно-активные вещества в текстильной промышленности и в первую очередь при производстве синтетических и искусственных 1 олокон, искусственных кож, в нефтяной иромышленности, при флотации руд, при производстве синтетического каучука, датскеных изделий, пластификаторов, пластмасс, в лакокрасочной промышленности, п металлургии, металлообрабатывающей промышленности, в производстве бетона, в строительстве асфальтовых дорог, в пищевой промышленности, и сельском хозяйстве, е медицине и других отраслях. [c.4]

    Большое значение приобретают поверхностно-активные вещесг-ва в связи с развитием производства синтетических материалов и изделий на их основе — искусственного и синтетического волокна, пластических масс, синтетического каучука, искусственной кожи, искусственного меха и других. Поверхностно-активные вещестаа широко применяют для приготовления смол и пластических масс, при пылеулавливании в шахтах и химических производствах, прп выработке эмульсий ядохимикатов для сельского хозяйства, эмульгаторов в пищевой промышленности, деэмульгаторов для обезвоживания нефтей, диспергаторов-пептизаторов для получения тонкодисперсных красителей, графита, ингибиторов коррозии оборудо- [c.17]

    Особенно бысгро начинает развиваться органическая химия с 60-х годов прошлого столетия, когда А. М. Бутлеров создал теорию химического строения органических соединений, ставшей научной основой для дальнейшего развития исследований в этой области химии. Немаловажную роль сыграли в развитии химической науки развивающиеся буржуазные общественно-экономические отношения, и в первую очередь рост производительных сил. Однако в дореволюционной России химическая промышленность, как и химическая наука, не получили должного развития. Только победа Великой Октябрьской социалистической революции создала в нашей стране благоприятные условия для развития химической науки, и в частности органической химии. За годы советской власти родилась мощная химическая промышленность. Впервые была создана нефте-и газоперерабатывающая промышленность, началось производство пластических масс, искусственных волокон и каучуков. Стала развиваться химия красителей, лекарственных веществ, витаминов и моющих средств. Органические соединения начали применяться практически во всех отраслях промышленности лaкoкpa o нoй, фармацевтической, пищевой, топливной, кожевенной, текстильной и др. Без органической химии сейчас нельзя представить современное сельское хозяйство, машино- и самолетостроение, транспорт и электропромышленность. Незаменимое применение в строительной индустрии нашли пластмассы, полимерцементы и полимербетоны, клеи и герметики, кремнийорганические соединения, поверхностноактивные вещества и другие продукты. [c.7]

    Эмульсии часто встречаются в природе например, молоко, млечные соки каучуконосных растений, сырая нефть. Последняя представляет эмульсию воды в углеводородах, стабилизированную смолами и асфальтенами. В некоторых отраспях промышленности (парфюмерной, медицинской, пищевой) эмульгирование является технологическим процессом (производство мазей, кремов, масла, маргарина и др.). Применяется эмульсионная полимеризация диеновых углеводородов при производстве синтетического каучука и некоторых смол, в результате чего образуется латекс - эмульсия каучука и смол в воде. Эмульсия битума в воде применяется при строительстве дорог. [c.64]

    Сущестнениую роль играют коллоиды в промышленности, главным образом в таких ее отраслях, как добыча и переработка нефти, металлургическая промышленность, горнорудное дело, производство различных строительных материалов и пластмасс, синтетических волокон, синтетического каучука и резины, текстильная, лакокрасочная и пищевая промышленность, мыловаренное производство и т. п. Такие важные для промышленности технологические процессы, как обогащение полезных ископаемых путем флотации, механическая и термическая обработка металлов, технология фотографических и кинематографических процессов, имеют прямое отношение к коллоидно-дисперсным системам. В фармацевтической и парфюмерной промышленности многие лекарственные и бытовые [c.278]

    НОМ полнмерной молекулы. Число звеньев называется степенью полимеризации (п). П. с молекулярной массой М = 10 —10 называются высокополи-мерами, а П. с низкой молекулярной массой — олигомерами. П., цепи которых построены из одинаковых звеньев, называются гомополимерами, а из разнородных — сополимерами. П. бывают линейными, разветвленными и пространственными. Если основная цепь состоит из двух мономеров, а боковые ответвления — из других, то такие разветвленные П. называются привитыми сополимерами. Наряду с карбоцепными П., содержащими в основной цепи только атомы углерода, встречаются сополимеры, основные цепи которых, кроме углерода, содержат атомы кислорода, азота, серы и др. Неорганические П. не содержат атомов углерода. Природные П.— белки, целлюлоза, крахмал, натуральный каучук и др. П.—пластические массы, синтетические каучули, волокна, лаки, пленки, клеи и др. П. широко используют для создания различных конструкционных полимерных материалов, волокон, резин, пластмасс, стеклопластиков, покрытий и др. Пластмассы применяют как заменители цветных металлов в электропромышленности, в машиностроении, а также в строительстве, сельском хозяйстве, химической и пищевой промышленности, в быту. [c.198]

    ЭМУЛЬСИЯ — жидкость, в которой находятся во взвешенном состоянии микроскопические частицы другой жидкости. Например, молоко — Э., в которой капельки жира распределены в воде. Э. играют большую роль в химической технологии пищевых продуктов (сливочное масло, маргарин), мыловарении, нри переработке натурального каучука, изготовлении смазок, в медицине, живописи и т. п. Эмульгирование осуществляют двумя методами — диспергированием и конденсацией. Для придания Э. устойчивости применяют эмульгаторы — поверхностно-активные вещества (олеат натрня, алкклсульфаты, алкилсульфонаты, олеат кальция и др.). [c.292]


Смотреть страницы где упоминается термин Пищевые каучуки: [c.273]    [c.287]    [c.287]    [c.287]    [c.411]    [c.186]    [c.411]    [c.283]    [c.10]    [c.24]    [c.8]    [c.4]    [c.189]    [c.389]    [c.16]    [c.68]    [c.170]    [c.295]   
Крепление резины к металлам Издание 2 (1966) -- [ c.24 ]




ПОИСК







© 2025 chem21.info Реклама на сайте