Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мыла катионные

    Для улучшения свойств смазок применяют мыла, приготовленные одновременно на катионах щелочных и щелочноземельных металлов (N3, Са). Могут применяться также комплексные мыла высоко- и низкомолекулярных жирных кислот, содержащие один и тот же катион. Например, комплексную кальциевую смазку (кСа) получают загущением минеральных масел кальциевыми мылами стеариновой и уксусной кислот. [c.375]


    Клаус дал следующее толкование теории Банкрофта относительно образования оболочек и получения того или иного типа эмульсий. Относительно системы масло - мыльный раствор он высказался так Мыла стремятся накапливаться на поверхности раздела масло - вода и образовывать сплошную оболочку. Так как мыла с одновалентными катионами легко диспергируются в воде, но не в масле, то они образуют оболочку (диафрагму), которая легче смачивается водой, чем маслом. Следовательно, поверхностное натяжение со стороны воды ниже, чем со стороны масла. Так как внутренняя поверхность оболочки, окружающей шарик, меньше внешней, то оболочка стремится выгнуться так, чтобы обволакивать масляный шарик, находящийся в воде. Вследствие этого поверхность на стороне с более высоким натяжением, по сравнению с таковой же с менее высоким, понижается до минимума. С другой стороны, оболочка из мыла с двух- и трехвалентными катионами, которое значительно легче диспергируется в масле, чем в воде, смачивается маслом лучше, нежели водой, и, соответственно, способствует образованию обратных эмульсий воды в масле . Если же антагонистические эмульгаторы содержатся в системе в таком количестве, что их действия взаимно поглощаются, то оболочка не выгибается ни в каком направлении, так что при прекращении перемешивания обе фазы расслаиваются под действием силы тяжести. [c.16]

    Соли четвертичных аммониевых оснований с углеводородными радикалами С12—С18,, получаемые на основе синтетических жирных кислот, используют ДЛЯ производства катионных бактерицидных ПАВ. На основе кальциевых мыл СЖК С12—Си получают пластичные смазки, не уступающие по эксплуатационным свойствам жировому солидолу. Из фракции Сю—С16 получают литиевое мыло, используемое для приготовления пластичных смазок с высокими эксплуатационными свойствами. Эти же кислоты включены в рецептуру синтетических каучуков и резиновых смесей. Они повышают пластичность резиновой массы, способствуют лучшему диспергированию порошковых ингредиентов в композиции, например сажи и облегчают процесс обработки резиновых смесей. В промыш- ленности строительных материалов широкое применение нашли кубовые остатки, содержащие синтетические кислоты выше С20 (дорожный битум улучшенного качества). На базе кубовых остатков предложена рецептура эффективных деэмульгаторов нефти. Помимо сказанного, СЖК Си—С20 находят применение практически всюду, где ранее использовали стеарин из природных жиров. [c.324]

    Более совершенной является схема производства смазок на мыльных загустителях (при использовании природных жиров — глицеридов кислот) периодическим способом с применением на стадии омыления жиров контактора. Установка предназначена для производства мыльных смазок различного типа. Наряду с получением мыльного загустителя непосредственно в процессе производства смазок (прямое омыление) можно приготовить загуститель, катионом которого являются тяжелые металлы, например свинец, по реакции двойного обмена через натриевые мыла. Иногда такой процесс является периодическим и осуществляется в две или три ступени. [c.101]


    В общих чертах эмульсионная полимеризация, вероятно, протекает так, как это впервые представил Гаркинс [66] и как показано па рис. 4. Вначале эмульсионной полимеризации, когда система обычно состоит из мономера, воды, мыла (или другого поверхностно-активного вещества) и водорастворимого инициатора реакции (нанример, персульфата калия), мыло существует главным образом в виде мицеллярного раствора (т. е. небольших грунн анионов жирных кислот, окруженных облаком нейтрализующих катионов), а мономер находится преимущественно в виде мелких капелек, но частично также растворенных в мицеллах мыла. Короче говоря, надо предполагать, что это такая же система, какая обычно получается, когда любая не растворимая в воде органическая жидкость, уравновешивается раствором поверхностно-активного вещества выше критической концентрации образования мицелл [78]. [c.131]

    Высаливающая способность электролитов различна. Наибольшей высаливающей способностью обладает едкий натр. Если принять его способность за единицу, то для получения таких же результатов поваренной соли следует брать больше в 1,15 раза, а углекислого натрия в 2,11 раза. При высаливании калийных мыл поваренной солью или едким натром и натровых мыл хлористым калием и едким кали происходит частичная замена катиона мыла катионом электролита. [c.177]

    Установка предназначена для производства смазок на мылах различных катионов (металлов), получаемых непосредственно в процессе изготовления смазок прямым омылением природного или синтетического жирового сырья, а также углеводородных смазок путем загущения нефтяных масел твердыми углеводородами. [c.100]

    В жесткой воде (содержащей катионы Са +, Mg +) моющая способность мыл падает растворимые натриевые и калиевые соли вступают в обменную реакцию [c.347]

    Щелочные соли жирных кислот средней молекулярной массы В1 егда дают эмульсии типа м/в, а соли двухвалентных металлов, например магния, — эмульсии в/м. При постепенном увеличении концентрации двухвалентных ионов в эмульсии м/в, стабилизированной мылом с катионом однозарядного металла, происходит обращение эмульсии и ее переход в эмульсию типа в/м. [c.172]

    Мыла многовалентных катионов, такие, как стеараты алюминия, тория и марганца. [c.102]

    Аналогично образуются пленки или пузырчатые слои и в тех случаях, когда о и являются следствием накопления нафтеновых и других мыл на границе раздела фаз. Качества (твердость) пленок в этом случае будут зависеть от концентрации мыл в растворе нефти ил воды и характера катионов. [c.69]

    Далеко не все мыла могут быть использованы для приготовления смазок. Определяющую роль в формировании структуры и свойств смазок играют валентность и свойства катиона, состав и строение аниона используемого мыла. При прочих равных условиях наиболее крупные волокна характерны для натриевых смазок (до 80 мкм), короткие —для литиевых (2—5 мкм) и для кальциевых (1—3 мкм) смазок. Дисперсная фаза алюминиевых смазок образована мелкими аморфными сферическими частицами (не более 0,1 мкм). [c.358]

    Смазки, полученные на мылах различных катионов, значительно отличаются по защитным свойствам. [c.311]

    Катион мыла также оказывает влияние на низкотемпературные свойства смазок. Так, натриевые и литиевые смазки по низкотемпературным свойствам близки между собой, но значительно превосходят кальциевые, алюминиевые и бариевые смазки. [c.311]

    Устойчивость эмульсий типа в/м, стабилизованных мылами с поливалентным катионом, ранее объяснялась главным образом ка- личием на поверхности капелек эмульсии структурно-механического барьера. Объяснение же устойчивости эмульсий типа в/м существованием на межфазной поверхности двойного электрического слоя на первый взгляд кажется невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако, как уже указывалось (гл. IX, разд. II), в последние годы было показано, что даже в неполярных средах может происходить некоторая диссоциация молекул эмульгатора. Соли поливалентных металлов и органических кислот в углеводородных средах обычно имеют константы диссоциации порядка 10 . Следовательно, если, на- пример, концентрация такой соли в бензоле равна 10 ммоль/л, то концентрация ионов в растворе будет иметь значение порядка 10 ° н. При таких условиях двойной электрический слой будет, конечно, очень диффузным расчеты показывают, что его толщина должна составлять несколько микрометров. Отсюда емкость двойного слоя в неполярной жидкости должна быть весьма невелика и нужен очень небольшой заряд для того, чтобы обусловить значительный поверхностный потенциал. Таким образом, электростатические силы отталкивания могут играть существенную роль и в устойчивости обратных эмульсий, особенно не очень концентрированных. [c.374]

    ТРИАРИЛМЕТАНОВЫЕ КРАСИТЕЛИ — синтетические красители общего строения САгзХ А (катионоидные Т. к-с окрашенным катионом) нли СЛгзО Л 1+ (анионоидные Т. к. с окрашенным анионом), где Аг — ароматический остаток, X — азотсодержащий остаток (напр., NHa), —анион, Л1+ — катион. Наибольшее значение имеют трифенилмета-новые красители (Аг — фенил). Т. к. бывают красного, фиолетового, синего и зеленого цветов. Дают яркие и чистые окраски. Недостатком их является низкая светопрочность и слабая стойкость к щелочной и кислотной обработкам. К Т. к. относятся такие известные красители, как фуксин, кристаллический фиолетовый, бриллиантовый зеленый, малахитовый зеленый, аурин, флуоресцеин и др. Т. к. применяют в производстве чернил, карандашей, полиграфических лаков, для крашения бумаги, мыла и как индикаторы. [c.253]


    Опыты по изучению физико-химических и коллоидных характеристик латексов в зависимости от природы эмульгатора показали, что метод модифицирования Канифоли, а также природа катиона мыла весьма незначительно изменяет характеристику латексов (табл. 5). Хранение латекса в течение месяца не вызывает изменений его коллоидных свойств. [c.153]

    Метод модифицирования канифоли, а также природа катиона мыла практически ие оказывают (влияния на агрега-тивную устойчивость латексов в изученных рецептах. [c.155]

    Очень интересным свойством эмульгаторов является их способность образовывать определенный тип эмульсии. Оказалось, что незначительные изменения в составе некоторых эмульгаторов могут вызвать обращение эмульсии, которую они стабилизируют. Например, щелочные соли средних жирных кислот дают эмульсии типа М/В, а соли этих же кислот с двухвалентными металлами (например, с магнием) — эмульсию В/М. Если в эмульсии М/В, стабилизированной мылом с одновалентным катионом, постепенно увеличивать концентрацию двухвалентных ионов, то можно вызвать обращение этой эмульсин в эмульсию В/М, причем в некоторой промежуточной области концентраций оба типа эмульсий оказываются неустойчивыми. [c.245]

    Жесткая вода образует накипь на стенках нагреваемых сосудов, что существенно ухудшает их теплотехнические характеристики. Катионы Са + и Ь g + под действием жирных кислот мыла образуют малорастворимые соли, создающие при стирке пленки и осадки, мешающие моющему действию мыла и увеличивающие его расход. Жесткая вода непригодна для производства бумаги, для крашения тканей, приготовления пищи и напитков и во многих других случаях. [c.412]

    Жесткость воды. Катионы кальция, магния, железа(П) и других металлов (Ме), карбонаты которых нерастворимы, содержащиеся в природной воде (рис. 58), придают ей жесткость . В жесткой воде хуже растворяются вещества, плохо мылится мыло, из нее выделяется много накипи, медленнее протекают химические процессы. [c.288]

    Как уже указывалось в главе VI, стабилизация дисперсной системь с помощью структурированных механически прочных оболочек универсальна и придает дисперсной системе практически безграничную устойчивость. Тип образующейся концентрированной эмульсии зависит главным образом от природы эмульгатора. Выбор эмульгатора определяется следующим правилом эмульсии первого типа м/в) стабилизуются растворимыми в воде высокомолекулярными соединениями, например белками или воднорастворимыми гидрофильными мылами (оле-атом натрия и вообще мылами щелочных металлов). Эмульсии второго типа в/м) стабилизуются высокомолекулярными соединениями, растворимыми в углеводородах, например полиизобутиленом, олеофильными смолами и мылами с поливалентными катионами (олеатом кальция и др.), не растворимыми в воде, но растворимыми в углеводородах. Следовательно, эмульгатор должен иметь большее сродство с той жидкостью, которая является дисперсионной средой. Воднорастворимые мыла и воднорастворимые высокополимеры стабилизуют эмульсин масла в воде, в которых вода — дисперсионная среда. Каучук и другие высокополимеры, растворимые в углеводородах, стабилизуют эмульсии, в которых дисперсионная среда — масло (углеводородная жидкость). [c.143]

    Первые сведения о поверхностно-активных веществах анионного типа относятся еще к VIII в., когда началось производство солей карбоновых кислот из растительных и животных жиров, известных под названием мыла. Катионные ПАВ приобрели промышленное значение, начиная с 1935 г. [c.14]

    Относительная степень ионности менее полярных соединений— стеаратов — значительно ниже, чем у соответствующих сульфонатов. Это объясняет податливость мыл к любому внутреннему и внешнему воздействию на систему загущение маловязкой среды, способность образовывать макромицеллы-волокна, чувствительность к природе катиона. [c.209]

    Гидрохлорид природного каучука был получен действием жидкого хлористого водорода и последующим нагреванием под давлением пропусканием газообразного хлористого водорода в раствор вальцованного каучука подвешиванием тонких пластин каучука в емкости, заполненные газообразным хлористым водородом. Газообразный хлористый водород можно также пропускать в латекс природного каучука при условии, что латекс предварительно стабилизирован путем добавки к нему катионного мыла, типа фиксанол , т. е. бромида цетилпиридина, или же неионного мыла типа эмульфор О , олеилалкоголь-полиэтиленоксид.. Гидрохлорид природного каучука, используемый для производства прозрачных пленок, применяемых для упаковки пищевых продуктов, гидро-хлорируется в бензольном растворе, затем смесь оставляется на некоторое время для созревания избыток хлористого водорода нейтрализуется. Теоретически вычисленное содержание хлора — 33,9%, но продукты с желательными свойствами получаются уже при содержании в них хлора в пределах 28—30%. Если реакция проходит слишком далеко, продукт становится нерастворимым. [c.222]

    В качестве депрессоров в топливах могут применяться те же присадки, что и в смазочных маслах, а именно продукты конденсации неполярных органических соединений, например, нафталина с хлорированным парафином (депрессор АзНИИ) продукты вольтолизации — вольтоли, мыла многовалентных катионов, продукты окисления высокомолекулярных углеводородов, продукты конденсации неполярных соединений с полярными и др. [c.336]

    Получение комплексных мыльных смазок. Смазки на комплексных мыльных загустителях отличаются высокой водостойкостью, хорошими вязкостно-температурными, противоизносными и защитными свойствами. В зависимости от состава комплексно10 загустителя выделяют три группы комплексных смазок с одинаковыми (по катиону) мылами высокомолекулярных жирных кислот и солями низкомолекулярных, как правило, водорастворимых жирных кислот с мылами высокомолекулярных жирных кислот и гидроокисью металла, причем катион мыла и металл гидроокиси могут быть различными и одинаковыми с мылами и солями жирных кислот одного катиона и добавлением гидроокиси другого металла. Несмотря на многообразие типов комплексных мыльных загустителей практическое применение наш.1и смазки на мылах одного катиона высоко- и низкомолекулярных карбоновых кисло 1. [c.262]

    Смазки классифицируют по составу и назначению. Поскольку определяющее влияние-на структуру и свойства смазок оказывают загустители, то тип загустителя положен в основу классификации смазок по составу. По типу загустителя смазки подразделяют на мыльные, углеводородные и смазки на неорганических загустителях. Мыльные смазки, в свою очередь, в зависимости от состава загустителя делятся на обычные мыльные смазки, смазки на комплексных (в состав загустителя входят соли низко- и высоко-мoJJ кyляpныx кислот) и смешанных (в состав загустителя входят соли различных металлов) мыльных загустителях. По типу катиона молекулы мыла смазки делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и т. п. В зависимости от состава жиров выделяют смазки на синтетических (фракции СЖК, получаемые окислением парафинов) и на природных (как правило, смеси гидрированных растительных и животных) жирах, а также на технических жирных кислотах (стеариновой, 12-оксистеарино-вой и т. п.). [c.357]

    Следующий класс — высоко поверхностно-активные соединения (мыла п детергенты). Это соединенпя, содержащие одну или более гидрофильную группу (анионную, катионную или непонпую) и одну или более гидрофобную группу (алкильный илп арильный углеводород, фторзамещенный углеводород и т. д.). Такие дифпльпые молекулы сильно адсорбируются на межфазной поверхности с их помощью могут быть приготовлены довольно устойчивые эмульсии. [c.76]

    Мыльные смажи, для получения которых в качестве загустителя применяют соли высших карбоновых кислот (мыла). В зависимости от катиона мыла их разделяют на литиевые, натриевые, калиевые, кальциевые, бариевые, алюминиевые, цинковые, свинцовые и др. В зависимости от аниона мыла смазки одного и того же катиона разделяют на обычные и комплексные. Комплексные смазки работоспособны в более широком интервале температур, чем обычные. Среди комплексных смазок наиболее распространены калыщевые, литиевые, бариевые, алюминиевые и натриевые. Кальциевые смазки, в свою очередь, разделяют [c.314]

    Смазки, загустителями в которых служат твердые вещества, не взаимодействующие с маслами, но диспергирующиеся в них с образованием коллоида. Такими загустителями являются мыла. К этому типу относятся 85—90% всех изготовляемых и применяемых в настояп1ее время смазок. В зависимости от катиона мыла различают несколько групп смазок. [c.375]

    Смад-1 представляет собой смесь окисленного петролатума с дизельным топливом в соотношении от 1 1 до 1 3. Применяется в основном с глинистыми растворами, а также с водой после предварительного смешения с глинопорошком в соотношении 1 1. Оптимальная концентрация добавки 1—2% для неутяжеленных и 2—4% для утяжеленных растворов. К недостаткам смад-1 относится омыление ее при pH >10 и образование водонерастворимых кальциевых и магниевых мыл при поступлении в буровой раствор катионов кальция и магния, в результате чего противоизносные и смазочные свойства смад-1 резко ухудшаются. [c.46]

    При флотации несульфидных минералов в качестве коллекторов обычно применяют жирные кислоты и их мыла. Ионогенные группы этих коллекторов всегда обращены к твердой фазе (Solid), поэтому эти группы принято называть солидофильными. Особенно пригодны такие коллекторы для солеобразных минералов, в состав которых входят катионы щелочноземельных металлов Са +, Mg +, Sr +. В кристаллических решетках этих минералов преобладает ионная связь, и их катионы активно взаимодействуют с химически адсорбирующимися поверхностно-активными ионами R OO кислоты или мыла. На закреплении коллекторов на поверхности флотируемых частиц сказывается также и влияние длины углеводородного радикала, а именно, взаимодействие углеводородных цепей друг с другом способствует образованию адсорбционной пленки и чем сильнее такое взаимодействие, тем прочнее закрепляются адсорбционные слои коллектора на поверхности минерала. [c.166]

    Следует, однако, заметить, что химические и приведенные выше адсорбционные представления приложимы далеко не всегда. Например, при получении водных эмульсий углеводородов с применением в качестве стабилизатора обычных мыл также образуется двойной электрический слой на поверхности капелек. При этом потенциалопределяющими ионами служат анионы жирной кислоты со сравнительно длинным углеводородным радикалом, а про-тивоион ами — катионы щелочного металла. Понятно, что никакого комплексообразования или достройки кристаллической решетки в этом случае не может быть, так как капельки углеводорода химически инертны и аморфны. Однако существенно то, что в этом случае капельки углеводорода адсорбируют ионы, в состав которых входят углеводородные радикалы. [c.242]

    Третий фактор, который может обусловливать лишь устойчивость эмульсий второго рода, стабилизованных мылами с поливалентным катионом, сводится к адсорбции на поверхности капелек воды полярных концов достаточно длинных и гибких углеводородных участков м0лёкул мьта", растворенных во внешней неполярной фазе эмульсии и способных совершать микроброуновское движе- [c.374]

    В строительных и дорожных материалах на основе битумов и прежде всего в различных асфальтобетонах добавки поверхностно-активных веществ — пластификаторов — приобретают большое значение, резко повышая сцепление битума с дисперсным минеральным заполнителем и прилипание битума к каменному материалу. Такое увеличение адгезии достигается гидрофобизацией минеральных поверхностей в результате химически фиксированной адсорбции с образованием нормально ориентированного адсорбционного слоя поверхностно-активного вещества. Кремнеземистые поверхности, например, кварцевого песка, гидрофобизируются при этом, как уже указывалось, ка-тионактивными веществами. Однако при предварительной активации щелочноземельными катионами, например обработкой известковой водой, гидрофобизация может быть осуществлена также и с помощью анион.1ктивных веществ— карбоновых кислот и их мыл, которые к тому же являются более универсальными активаторами, гидрофоби-зируя также и карбонатные породы (известняки, доломиты). [c.72]

    Мыла с двух- и трехвалентным катионом (кальциевые, магние-вые, алюминиевые и т. п.) нерастворИмЕг в воде, но образуют коллоидные системы в углеводородных средах. Они используются в консистентных смазках на минеральном масле, а также для стабилизации эмульсий второго рода (в/м). [c.401]

    В последнее время стали широко применять катионактивные мыла, носителем свойств мыла у которых является катион. Сюда относятся соли четырехзамеш,енных аммониевых оснований, пиридиновых соединений и др. Эти мыла распадаются в воде так, что анионом является С1 , а катионом соответственно [c.352]

    Поскольку сульфокислоты являются сильными кислотами, не только их соли с одновалентными катионами, но и соли с многовалентными катионами, а также и сами сульфокислоты достаточно хорошо растворимы в воде и образуют водные растворы со всеми характерными свойствами мыльных растворов. Это является важным преимуществом сульфомыл перед обычными мылами, так как позволяет использовать их в жесткой воде и аже в кислой среде. [c.402]

    Ионогенные коллоидные поверхностно-активные вещества диссоциируют в водных растворах, при этом анионоактивные вещества образуют поверхностно-активные анионы, способные агрегировать друг с другом, образуя мицеллы, а катионоактивные — поверхностно-активные катионы. Амфолитные коллоидные поверхностно-активные соединения диссоциируют с отщеплением малых поверхностнонеактивных катионов и анионов. Примером анионоактивного вещества служит обычное мыло, диссоциирующее по схеме. [c.164]


Смотреть страницы где упоминается термин Мыла катионные: [c.140]    [c.254]    [c.68]    [c.315]    [c.391]    [c.62]    [c.156]    [c.339]    [c.379]    [c.282]    [c.312]   
Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.247 , c.248 ]




ПОИСК







© 2025 chem21.info Реклама на сайте