Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реальный газ летучесть

    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]


    Для смеси реальных газов летучесть fi компонента i зависит от состава. По правилу Льюиса и Рэндалла можно рассчитать fi при температуре Т и давлении р, когда известна летучесть fi чистого газа в тех же условиях  [c.168]

    Практически все реальные равновесные зависимости и выражения для относительной летучести имеют экспоненциальный или квадратичный характер. Во всяком случае они нелинейны, что значительно увеличивает количество вычислительных блоков, необходимых для решения математической модели ректификационной колонны в случае, если пределы изменения рабочих условий заставляют учитывать подобное обстоятельство. Это, в частности, справедливо при изучении переходных характеристик колонн в период запуска. Лучше всего указанные исследования описаны в работах, опубликованных Розенброком и Вильямсом с сотр. з. [c.115]

    Таким образом, трудности вычисления AG для процессов с реальными газами переносятся на поиски зависимости летучести реального газа от давления и температуры. [c.132]

    Для приближенного вычисления летучестей реальных газов можно воспользоваться методом расчета, основанным на принципе соответственных состояний. Согласно этому принципу, ряд одинаковых свойств, в том числе и коэффициент активности различных реальных газов, оказываются равными при одинаковых значениях приведенной температуры и приведенного давления.  [c.136]

    Уравнения состояния смесей реальных газов в тех немногих случаях, когда они найдены и точно отражают свойства смесей, очень сложны и имеют характер эмпирических уравнений. Использование этих уравнений привело бы к крайне сложным выражениям для химического потенциала. Кроме того, для большинства газовых смесей уравнения состояния неизвестны. Поэтому химические потенциалы и некоторые другие свойства реальных смесей газов и жидких растворов находят, применяя метод летучести (см. стр. 131). [c.181]

    Закон Рауля не выполняется для реальных растворов. Парциальные давления (или летучести) этих растворов больше или меньше давлений (или летучестей) паров идеальных растворов. [c.191]

    Коэффициент активности у является функцией физико-химических свойств всех остальных компонентов смеси и их концентраций. Для некоторых смесей в присутствии разделяющего агента подлежащие ректификации компоненты из-за их различной растворимости по-разному отклоняются от законов идеальных растворов, поэтому их коэффициенты активности различны. Установлено также, что коэффициент активности каждого компонента увеличивается но мере увеличения концентрации от О до 100%, однако для различных компонентов смеси в разной степени. Таким образом, для реальных смесей относительная летучесть равна отношению давлений насыщенных паров и коэффициентов активности  [c.208]


    Для реальных систем рассматриваемая таким образом константа К выражается через летучесть / реагирующих веществ. Например, для приведенной выше реакции [c.209]

    Для реальной газовой смеси из-за отсутствия хорошей теории зависимость химического потенциала от состава выражают уравнением типа (1.21а), вводя эффективную величину — летучесть / , заменяющую парциальное давление  [c.25]

    Расчет коэффициента летучести реального газа [c.39]

    Отметим, что летучесть — расчетная величина и заменяет давление в уравнении химического потенциала (г. По определению, для индивидуального вещества химический потенциал равен энергии Гиббса 1 моль вещества О. Если температура постоянна, то как это следует из соотношений, приведенных в табл. 2, для 1 моль реального газа [c.39]

    Заменив давление на летучесть, вновь получим уравнение, справедливое для реального газа  [c.41]

    Г. Константы равновесия. Реакция в реальной газовой смеси характеризуется константой равновесия /С/ [см. уравнение (1.28)] и уравнением изотермы (1.35) при этом для летучести компонента можно пользоваться соотношением (1.55). [c.78]

    Замена для реальной газовой смеси парциальных давлений летучестями, а константы Кр константой Кг приводит к тому, что но величине Кр° удается определить не Кр, а К/. Поскольку К в соответствии с (1.55) можно представить в виде  [c.78]

    Таким образом, основной проблемой расчета Км а х для реальной газовой смеси является определение коэффициентов уг и по ним величины Ку. Заметим, что коэффициент у,- для компонента смеси, находящейся при давлении р и температуре вообще говоря, не равен коэффициенту у° индивидуального газа при тех же р и Т, так же, как и не равны летучести компонента в смеси /г и чистого газа /Л Если, однако, парциальный мольный объем компонента при Т, р смеси равен мольному объему того же индивидуального газа при тех же Г и р, то для летучести будет выполняться условие (1.55) и тогда у°=у,. При таком приближении (а расчеты проводят при его использовании) определение Км к х оказывается достаточно простым и включает следующие этапы  [c.78]

    Итак, введение активности а/ позволяет получить выражение химического потенциала реального раствора, а величина ш может быть рассчитана, например по летучестям (давлениям) на-сыщ-енного пара компонента над раствором f , р,) и индивидуальным веществом f°, р°). [c.86]

    Константа / f характеризует химическое равновесие в реальной газовой смеси, находящейся в равновесии с реальной жидкостью. Расчет этой константы рассмотрен в разд. 11.3. Величина Кг определяется ио летучестям индивидуальных веществ при температуре реакции и давлении их насыщенного пара. Приведенные соотнощения устанавливают принципиальную возможность расчета равновесия в реальном растворе. [c.87]

    Г. Льюис и М. Рендалл для учета влияния отклонения реальных газов от равновесного состояния идеальных газов ввели понятие об эффективном давлении — летучести (фугитивности). Замена упругостей летучестью в уравнениях фазовых переходов несколько приближает расчетные данные к экспериментальным. [c.215]

    Для того чтобы воспользоваться термодинамическими соотношениями, справедливыми для идеальных систем, для реальных смесей обычно вводятся поправки, характеризующие неидеальность паровой и жидкой фаз. В связи с этим вводятся понятия коэффициента летучести для паровой фазы и коэффициента активности — для жидкой фазы. Эти характеристики с основными параметрами равновесной системы связаны следующими соотношениями [c.409]

    ИЗОБАРНЫЙ И ХИМИЧЕСКИЕ ПОТЕНЦИАЛЫ ИДЕАЛЬНЫХ И РЕАЛЬНЫХ ФАЗ. ЛЕТУЧЕСТЬ, АКТИВНОСТЬ И КОЭФФИЦИЕНТ [c.17]

    ИДЕАЛЬНЫЕ И РЕАЛЬНЫЕ СИСТЕМЫ. ХАРАКТЕР ИЗМЕНЕНИЯ КОЭФФИЦИЕНТОВ АКТИВНОСТИ И ОТНОСИТЕЛЬНОЙ ЛЕТУЧЕСТИ В БИНАРНЫХ СИСТЕМАХ [c.27]

    Наиболее распространенным в практике ректификации типом систем являются системы, жидкая фаза которых представляет собой реальный раствор, а паровая фаза может рассматриваться как идеальный газ. Пользуясь коэффициентами активности, состав пара в таких системах можно рассчитать по уравнению (94), в котором коэффициенты относительной летучести выражаются соотношениями [c.28]

    Если >>=1, то это уравнение снова переходит для идеального газа в выражение (12.12). Используя летучести и все представленные выше уравнения для идеального состояния смеси, можно составить любые термодинамические соотнощения для реальных систем. [c.223]

    Для реального газа заменим давление на летучесть  [c.226]

    Интегрирование этого уравнения в общем виде невозможно, так как в правой части содержатся две независимые переменные, которые необходимо связывать между собою с помощью уравнения состояния вещества. Общее уравнение состояния вещества пока не получено, а частные уравнения будут использованы ниже. Ниже приведены методы расчета летучести для реальных газов, развитые на основе уравнения (12.37). [c.227]


    Расчет летучести по отклонению свойств реальных газов [c.228]

    Свойства реального газа отличаются от свойств идеального газа тем сильнее, чем выше давление в системе. Поэтому интегрирование уравнения (12.39) невозможно произвести для широкого интервала изменения давлений. Для более удобного расчета летучести можно это уравнение преобразовать, если ввести в объем, рассчитываемый для реального газа с применением уравнения Менделеева—Клапейрона, эмпирическую поправку а, то есть  [c.228]

    Льюис (1901) подошел к решению задачи совершенно другим путем, который, несмотря на его формальность, широко применяется при исследовании реальных систем. Он предложил для реальных систем сохранить тот же вид термодинамических уравнений, что и для идеальных, заменяя в них одни переменные (давление и концентрации) другими переменными. Вместо парциального давления Р,- в термодинамических уравнениях для реальных систем им вводится новая переменная —фугитивность (другой термин летучесть не рекомендуется). Отсюда фугитивность должна иметь размерность давления. При низких давлениях, когда свойства реальной газовой смеси будут приближаться к свойствам идеальной, фугитивность [ становится равной парциальному давлению Р г-го компонента  [c.271]

    Для описания поведения реальных газов нужно найти поправку Ку, определяемую из коэффициентов летучести. Коэффициенты летучести индивидуальных компонентов (7,), зависящие от давления и температуры, могут быть рассчитаны по уравнению [c.216]

    Можно также рассчитать константы равновесия в условиях высоких давлений, исходя из летучестей компонентов. Отклонение реальных газов от состояния идеальных при высоких давлениях может характеризоваться активностью вещества. Активность вещества определяет энергию Гиббса вещества, переходящего из [c.30]

    При низких давлениях можно приравнять летучесть к дарению. Летучесть характеризует отклонение реального газа от идеального состояния. Для реальных газов можно в уравнение идеального газа вместо давления подставлять значения летучести. Коэффициент активности газа у зависит также от коэффициента сжимаемости газов А,, который определяется по формуле  [c.31]

    Для оценки растворителей в последние годы широко используется газожидкостная хроматография [95, 96]. Ее достоинства — простота, оперирование с малыми объемами веществ, экспрессность и вместе с тем надежность получаемых результатов (особенно для предварительной оценки растворителей). Методом хроматографии определены относительные летучести Ор бинарных смесей бензола с насыщенными углеводородами в присутствии различных соединений (табл. 42) [89]. В реальных условиях экстрактивной ректификации при конечных концентрациях растворителей аг, 1 будет составлять лишь 0,6—0,8 ар, определенной методом хроматографии в условиях, приближающихся к бесконечному разбавлению . Однако и в этом случае относительная летучесть для большинства компонентов будет не менее 1,5—2,0, что достаточно для удовлетворительного разделения смеси. Наиболее трудно выделить экстрактивной ректификацией метилциклогексан, который обладает наивысшей температурой кипения. [c.238]

    Химический потенциал идеального и реального газов. Летучесть [c.124]

    Как И в случае чистого газообразного вещества, приближенные значения коэффициента активности смеси реальных газов ут можно найти по рис. УЬ5 после вычисления псевдокритических параметров этой смеси Трс и ррс по формулам (1У-55) и (1У-56) и определения приведенных температуры Тгт = Т1Трс и давления ргт = р1ррс- Отсчитав по диаграмме Нельсона — Доджа значение Ут нетрудно рассчитать летучесть смеси fm  [c.168]

    На рис. IV, 3 изображена для аммиака зависимость величины а от давления, характерная для многих реальных газов при обычной температуре. Площадь под кривой от р = 0 соответствует величине интеграла в уравнении (IV, 48). Так как при повышении давления функция а=ф(р) меняет знак, то интеграл также изменит знак (при значении давления большем, чем то, при котором а-- 0). Поэтому, как видно из уравнения (IV, 48), летучесть многих реальных газов, будучн сначала меньше давления, при увеличении давления становится равной, а затем и больше давления. Это иллюстрирует табл. IV, 2 [c.133]

    Реальные газы и пары не подчиняются законам Дальтона и Рауля, и в условиях высоких давлений требуется введение соответствующих поправок. Однако равенство яг/ = Рх может быть сохранено, если вместо я и Р ввести значения / и являющиеся некоторыми функциями состояния вещества и названные фугитив-ностью, или летучестью. Для идеальных газов фугитивность равна давлению насыщенных паров. Фугитивность реальных наров и газов равна давлению их насыщенных паров только при высоких степенях разрежения, когда они подчиняются законам идеальных газор,. На практике для приближенного определения фугитивности пользуются графиком, приведенным на рис. 9. На графике безразмерное отношение фугитивности к давлению Цр/Р) представлено в виде [c.48]

    Дополнительно к приведенным ранее принимают следующие допущения энтальпии потоков пара и жидкости от состава не зависят, следствием чего является постоянство потоков по колонне относительная летучесть смеси постоянна по высоте колонны мас-сопередача на тарелках эквимолярна разделительное действие куба и парциального конденсатора принимается рав1ным одной реальной тарелке для полного конденсатора. [c.77]

    Под летучестью понимают то давление, которое должна была бы производить газообразная реальная система, чтобы оказать такое же действие, что и газ в идеальном состоянии. Условно летучесть измеряется в атм. Па. Фугитивность по физическому смыслу можно рассматривать как меру рассеиваемости вещества. При приближении состояния реального газа к иде- [c.221]

    Для идеальных газов активности компонентов равны их парциальным давлениям, для реальных газов активности пропорцио" нальны парциальным давлениям, причем коэффициентом пропорциональности является летучесть (см., например, работу Хоугена, Ватсона и Рагаца ). Истинная константа равновесия зависит только от температуры. Модифицированные константы равновесия, которыми часто пользуются в расчетах, могут зависеть также от давления и состава реакционной смеси. Поэтому при использовании таких констант нужно проявлять осторожность. [c.25]

    Теперь уравнение (VIII,9) можно записать для различных систем в более простой форме. Для реакций, протекающих в газовой фазе, стандартные условия выбирают, как правило, при давлении I ат. При таком давлении реальные газы практически мало отличаются по характеристикам от идеальных газов. Следовательно, летучесть газа практически равна давлению, при котором газ находится, т. е. [° = р = 1 ат. Тогда [c.208]

    Другой способ вычисления химического потенциала реального газа предложил Льюис. При этом используются те же выражения, что и для вычисления хи.мического пот ициала чистого идеального газа, но вместо давления в них подставляют переменную — летучесть или фугитивность / (1иёас 1у — летучесть)  [c.125]


Смотреть страницы где упоминается термин Реальный газ летучесть: [c.190]    [c.22]    [c.392]    [c.19]    [c.18]    [c.43]    [c.210]    [c.164]    [c.125]   
Химическая термодинамика Издание 2 (1953) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Значения коэффициентов активности (летучести) реальных газов

Идеальные и реальные системы. Характер изменения коэффициентов активности и относительной летучести в бинарных системах

Изобарный и химические потенциалы идеальных и реальных фаз Летучесть, активность и коэффициент активности

Коэффициент летучести реальных газов

Летучесть

Летучесть в смеси реальных газов

Летучесть реального таза

Летучесть реальных газов

Определение. 4.2.2. Интерпретация. 4.2.3. Летучесть Летучести в смеси реальных газов

Равновесие в реальных системах. Летучесть и активность

Реальные газы летучесть

Термодинамика равновесий в реальных газовых системах. Летучесть и активность



© 2025 chem21.info Реклама на сайте