Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинированные модели аппаратов

    Рассмотрим пять наиболее общих комбинированных моделей, охватывающих широкий круг проточных аппаратов и реакторов (табл. П-2), в которых протекает реакция первого порядка. При расчете любого проточного аппарата в отсутствие химической реакции необходимо принять константу скорости реакции /с = 0. Для указанных моделей представлены передаточные функции и уравнения для расчета при нанесении импульсного и частотного возмущений. [c.115]


    При построении комбинированных моделей аппарат разбивают на ряд отдельных зон с различным механизмом и степенью перемешивания. Эти зоны могут соединяться последовательно или параллельно, могут быть как изолированными от окружающего пространства, так и взаимодействовать с соседними зонами. Обычно используют зоны со следующими моделями структуры потоков в этих зонах модель идеального вытеснения, модель идеального смешения, диффузионная модель, застойные зоны. Общий поток разбивают на ряд последовательно-параллельных потоков. В модель могут включаться рециркулирующие и байпасирующие потоки. П8 [c.118]

    При построении комбинированной модели принимают, что аппарат состоит из отдельных зон, соединенных последовательно или параллельно, в которых наблюдаются различные структуры потоков. С увеличением количества зон можно описать процесс любой сложности, но математическое моделирование при этом усложняется. [c.41]

    Комбинированная модель [45—48] предполагает, что аппарат состоит из ряда последовательных одинаковых ячеек (секций) неполного перемешивания с рециркуляционными потоками между ними. В этом случае ступенчатое изменение концентрации на границах секций, характерное для ячеечной и рециркуляционной моделей, сочетается с плавным изменением концентрации по высоте секций (см. рис. П-З). [c.28]

    Из комбинированных моделей, наиболее часто применяемых при анализе процессов массопередачи, осуществляемых в секционированных аппаратах (колоннах), используется ячеечная модель с обратным перемешиванием между ячейками. [c.175]

    Диффузионная модель Комбинированная модель при х (или при f—>-оо) трансформируется в диффузионную модель продольного перемешивания. Для этого случая из уравнения (П1.20) получаем выражение, описывающее распределение концентрации трассера в аппарате при его стационарном вводе  [c.44]

    Для определения по экспериментальным кривым отклика параметров комбинированной модели х (или /) и Ре необходимо при импульсном возмущении потока во входном сечении аппарата одновременно регистрировать функцию отклика в двух других сечениях. При этом возможны различные схемы эксперимента. [c.91]

    Таким образом, отражая реальный механизм продольной дисперсии вещества в секционированных колоннах, комбинированная модель структуры потока действительно является общей, а ее частные случаи соответствуют отдельным моделям структуры потока в колонных аппаратах химической технологии. [c.95]


    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    В ряде химико-техиологических процессов используют аппараты с перегородками, со смесительными устройствами различных типов, положение которых в аппарате выбирается эмпирически, вводят реагенты в нескольких точках но оси аппарата. В процессах нефтяной технологии при обработке сложных смесей различные составляющие смеси могут двигаться через аппарат с разными скоростями. Для таких сложных случаев можно пользоваться моделями с застойными зонами и комбинированными моделями. [c.58]

    Комбинированные модели. При анализе потоков жидкости в аппаратах с мешалкой широко применяются комбинированные модели. [c.444]

    На основе большого числа результатов исследований промышленных аппаратов структуру потока жидкости на тарелке можно представить в виде упрощенной комбинированной модели, состоящей из зон полного перемешивания на входе и выходе потока и диффузионной зоны между ними. Структурные схемы потока жидкости для трех чередующихся тарелок при прямотоке изображены на рис. 4.2, в, а при противотоке - на рис. 4.2, г. [c.186]

    Параметрами комбинированной модели являются объемы отдельных зон (тУг — объем зоны идеального перемешивания, ЬУг — объем зоны идеального вытеснения, (1Уг — объем застойной зоны) и соотношение потоков, связывающие эти ячейки, л — доля байпасного потока, Я — доля рециркуляционного потока, Уг — объем аппарата. [c.26]

    Представление потока в виде цепочки ячеек идеального перемешивания при наличии обратного потока приводит к ячеечной модели с обратным потоком, занимающей промежуточное положение между диффузионной и ячеечной моделями [12]. Наконец, стремление более полно учесть разнообразные причины, вызывающие неравномерность времени пребывания вещества в аппарате, привело к появлению большой группы комбинированные моделей [5, 13]. Обладая большим числом степеней свободы, чем модели диффузионная, ячеечная и обратного перемешивания, комбинированные модели позволяют путем увеличения числа определяю-пщх параметров, практически с любой желаемой степенью точности описать характер функции распределения с учетом специфических причин, обусловливающих неравномерность этого распределения. Конечно, для практики необходим разумный компромисс между числом степеней свободы, определяющим сложность математической модели, и необходимой степенью точности представления функции распределения времени пребывания. [c.218]

    Комбинированные модели получили пшрокое распространение для описания структуры потоков жидкости и газа в тарельчатых аппаратах [17, 18]. Для примера на рис. 4.2 изображена трехканальная комбинированная модель структуры потока жидкости на ситчатой тарелке [18]. [c.234]

    Использование рассмотренного выше математического описания при проектировании снимает проблему масштабного перехода, поскольку кинетическая модель процесса ректификации (на первом уровне иерархии) инвариантна относительно размера аппарата, а изменение эффективности контактного устройства обусловлено изменением гидродинамической обстановки на контактном устройстве, что количественно описывается уравнениями деформации параметров комбинированной модели структуры потока жидкости. [c.148]

    В табл. 4.4 рассмотрены наиболее распространенные комбинированные циркуляционные модели и приведены решения уравнений материального баланса. Особый интерес представляют ячеечные циркуляционные модели аппаратов с мешалкой, предложенные в работах [19—21]. [c.235]


    Для описания сложных структур потоков в технологических аппаратах обычно используются комбинированные модели, со- [c.259]

    Комбинированные модели структуры потоков. Сложность реальной гидродинамической обстановки в промышленных аппаратах приводит к необходимости построения на основе рассмотренных выше простейших моделей более сложных топологических структур — структур потоков комбинированного типа. При по- [c.116]

    Гидродинамическая структура в аппарате (по каждому из потоков) создается его конфигурацией (наличием перегородок и их расстановкой, диаметром аппарата, числом труб и числом ходов), скоростью течения потоков. Поэтому модели структуры обменивающихся потоков могут различаться (например, для теплообменников типа смещение - смещение, смещение - вытеснение и т. п.). Коэффициенты теплоотдачи обычно рассчитывают по критериальным соотношениям для различных режимов течения потоков тепло- и хладагента. При сложной конфигурации аппарата обычно представляют его в виде ряда зон различной структуры (или с комбинированной моделью потоков), а общая поверхность определяется как сумма поверхностей отдельных зон. Математическое описание типовых моделей теплообменников для стационарных условий приведено в табл. [c.92]

    При построении комбинированной модели принимают, что аппарат состоит из отдельных зон, соединенных последовательно или параллельно, в которых наблюдаются различные структуры потоков зона поршневого потока (идеального вытеснения), зона потока с идеальным перемешиванием зона с продольным перемешиванием застойная зона. Помимо этого, могут наблюдаться следующие локальные потоки байпасный, циркуляционный, проскальзывание и т. д. [c.115]

    На рис. И-3 представлены кривые отклика простейших комбинированных моделей на импульсное возмущение, расположенные под соответствующей компоновкой аппаратов.  [c.115]

    Комбинированные модели непрерывных проточных аппаратов и проточных реакторов [c.118]

    Для формирования гидродинамической модели аппарата систему, работающую в стационарном режиме, подвергают воздействию возмущения и получают экспериментальным путем функцию отклика на возмущение. Если функция отклика не соответствует ни одной из типовых гидродинамических моделей, то следует выполнить декомпозицию функции отклика, то есть вычленение из нее элементов, характерных для типовых гидродинамических моделей. Из полученных простейших гидродинамических моделей формируется блок-схема гидродинамической комбинированной модели, эквивалентной функции отклика на возмущение в целом. [c.28]

    Комбинированные модели. Не все реальные процессы удается описать с помощью рассмотренных выше моделей-в частности, процессы, в которых наблюдаются байпасные и циркуляционные потоки, застойные зоны. В таких случаях используют комбинированные модели структуры потоков. При построении такой модели принимают, что аппарат состоит из отдельных зон, соединенных последовательно или параллельно, с различными структурами потоков (идеального вытеснения, идеального смешения, зона с продольным перемешиванием, застойная зона и т.д.). [c.91]

    При включении в комбинированную модель застойной зоны обычно предполагают, что ее содержимое полностью неподвижно или очень медленно обменивается с основным потоком, проходящим через аппарат. В первом случае понятие застойной зоны сильно упрощается. Второй случай в большей мере отражает реальный процесс, но требует значительно более сложного анализа. [c.638]

Рис. 7.2.7.З. Представление аппарата с мешалкой моделью полного перемешивания с зоной вытеснения и застойной зоной а) реальный аппарат б) комбинированная модель Рис. 7.2.7.З. Представление аппарата с мешалкой <a href="/info/1866877">моделью полного перемешивания</a> с зоной вытеснения и <a href="/info/95759">застойной зоной</a> а) <a href="/info/1458263">реальный аппарат</a> б) комбинированная модель
    В ходе построения комбинированных моделей следует оценить возможность применения для различных участков аппарата математических описаний типовых моделей (идеального перемешивания, идеального вытеснения, идеального вытеснения с продольным перемешиванием, идеального вытеснения с продольным и поперечным перемешиванием, ячеечной), а также учесть застойные зоны. [c.129]

    Математическое описание процесса существенно усложняется, однако за счет этого удается получить необходимую точность воспроизведения свойств объекта моделирования. При построен комбинированных моделей аппарат представляют состоящим Щ Отдельных зон, в которых наблюдается различная структура потоков. При этом используются комбинации всех либо неско (ы1их из [c.225]

    Анализ целесообразно начать с комбинированной модели как наиболее общей, из которой при соответствующих значениях определяющих параметров вытекают в виде частных случаев рециркуляционная, диффузионная и ячеечная модели. Анализ математических моделей продольного перемешивания в аппаратах с застойными зонами следует произвести отдельно. Очень важны для практики теоретические модели, применимые к исследованию продольного перемешивания в экстракционных колоннах с концевыми отстойниками и модели, позволяющие определять интенсивность продольного церемешивания на отдельных участках аппарата. [c.81]

    В таких условиях секции аппарата подобны идеальным ячейкам полного перемешивания, и комбинированная модель переходит в рециркуляционную (ячеечную с обратдыми потоками). Применяя правило Лопиталя, находим из (IV. 19) предельное значение первого начального момента С-кривой ячейки к при Ре—>-0  [c.93]

    Количественные характеристики структуры потока, определяемые интенсивностью продольного перемешивания (параметрами модели), используются для расчета тепло- и массообменных аппаратов и химических реакторов. При таких расчетах различные модели могут привести к практически одинаковым результатам, если эти модели формально адекватны друг другу и потоку в аппарате, т. е. совпадают функции распределения времени пребывания. При формальной адекватности можно, установив эквивалентные соотношения между параметрами сложной и более простой модели, вести расчет аппарата по уравнениям более простых моделей. В связи с этим рассмотрим возможность аппроксимации двухпараметрической комбинированной модели структуры потока более простой — однопараметрической диффузионной модедью. Для этой цели необходимо установить эквивалентную связь между параметрами обеих моделей. [c.95]

    Изеестные теоретические модели, используемые для описания продольного перемешивания в колонных аппаратах, можно рассматривать как частные случаи обобщенной, или комбинированной, модели это позволяет при достаточной длине аппарата формально аппроксимировать одну модель другой. [c.252]

    Принимаемые допущения относительно гидродинамики потоков в массообменных элементах обусловлены теми моделями структуры, которые используются в данной модели. К наиболее распространенным моделям относятся смешение, вытеснение и диффузионная. Часто оказывается удобнее вместо диффузионной использовать ячеечную исходя из простоты ее машинной реализации. На основе указанных можно использовать любую их комбинацию, получая комбинированные модели, которые позволяют более полно отразить реальную структуру потоков, а именно зоны смешения, вытеснения, байпасирования, каналообразова-ния и т. д. Принятие той или иной модели имеет целью внесение поправки на оценку эффективности контакта фаз. Наиболее распространенные модели тарельчатых аппаратов и формулы для определения матриц коэффициентов эффективности приведены в гл. 4. [c.317]

    Комбинйровавные модели. При анализе гидродинамической обстановки в реальных аппаратах пшрокое распространение получили комбинированные модели [5, 13]. В общем случае комбинированную модель рассматривают как совокупность ячеек идеального смешения, вытеснения, застойных зон, связанных между собой перекрестными, байпасными и рециркуляционными потоками. Параметрами комбинированной модели являются объемы отдельных ячеек (тУ — объем ячейки идеального смешения Ь — объем ячейки идеального вытеснения Ур — объем застойной зоны) и соотношения потоков, связывающих эти ячейки (X — доля байпасного потока, г — доля рециркуляционного потока). Методы нахождения параметров некоторых комбинированных моделей, исходя из информации, получаемой на основании экспериментальных кривых отклика, подробно изложены в [5, 8,13]. [c.232]

    Идеализированные модели гидродинамической структуры потоков имеют ограниченное применение (модельные опыты в лабораторных аппаратах, камеральные установки малого объема). С увеличением размеров аппаратов используют более слодшые комбинированные модели, подробно рассмотренные в работе [17]. [c.72]


Смотреть страницы где упоминается термин Комбинированные модели аппаратов: [c.275]    [c.20]    [c.29]    [c.106]    [c.126]    [c.117]    [c.314]    [c.20]    [c.28]   
Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аппарат комбинированный

Комбинированные модели аппаратов вытеснения и смешения

Комбинированные модели аппаратов с байпасом

Комбинированные модели аппаратов с циркуляцией

Комбинированные модели аппаратов структура потоков на ректификационных тарелках

Комбинированные модели аппаратов ячеечная



© 2025 chem21.info Реклама на сайте