Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиус атома прочность связи

    Водородная связь Донором является атом А, несущий неподеленную пару электронов, акцептором — атом водорода, связанный с сильным электроотрицательным атомом А (О, Р, С1, К) Поляризация связи Н —> А ведет к освобождению части пространства около атома водорода, которая может частично насыщаться неподеленной парой электронов атома А другой молекулы Хотя атом водорода имеет самый малый ковалентный радиус и его ядро может особенно близко подходить к неподеленным парам электронов других атомов, тем не менее атомы, образующие водородную связь, находятся на довольно большом расстоянии, поэтому прочность этой связи мала, порядка 10-33 кДж/моль Различают меж- и внутримолекулярную водородную связь Примеры некоторых типов водородной связи [c.54]


    Кремний. Особенности химии кремния. Второй типический элемент IV группы — кремний — является типовым аналогом углерода. Как и у углерода, у атома кремния в невозбужденном состоянии на 5-орбита/[и находят ся два спаренных электрона, а р-орбитали имеют два неспаренных электрона. Разница в том, что атом углерода располагает валентными электронами при главном квантовом числе 2, а атом кремния характеризуется тем же числом валентных электронов (4) при я = 3. В связи с увеличением числа электронных слоев по сравнению с углеродом у кремния наблюдаются рост атомного радиуса, понижение потенциала ионизации, уменьшение сродства к электрону и ОЭО. Возрастание радиуса ведет к увеличению длины и уменьшению прочности межатомных связей, особенно в гомоатомных соединениях, вследствие чего растет электрическая проводимость и сужается ширина запрещенной зоны. Поэтому углерод в виде алмаза представляет собой изолятор, а кремний — полупроводник. В целом переход от первого типического элемента ко второму свидетельствует о нарастании металличности и ослаблении неметаллических свойств. Однако вследствие наличия большого числа валентных электронов этот переход более плавный, чем в III группе от бора к алюминию. [c.369]

    В этой связи Полинг считает, что от К до V число электронов на 5р-орбиталях, участвующих в металлической связи, увеличивается от 1 до 5, и ни один электрон не попадает на атомные -орби-тали. Этим объясняется постепенное возрастание прочности связи в ряду К—>-Са—>-5с—Т1—V. При переходе к Сг только 5,78 электрона на атом находятся на связывающих орбиталях, а остальные 0,22 электрона начинают заполнение атомных -орбиталей, не участвующих в сцеплении. Весьма приближенно, учитывая постоянство атомных радиусов, число связывающих электронов остается неизменно равным 5,78 на атом от Сг к N1. Распределение электронов приведено в табл. 6. [c.148]

    Энергия атомных кристаллов с ковалентными связями зависит от прочности связей. Например, у алмаза энергия решетки очень велика ( 170 ккал г-атом), у кристаллических кремния и германия 86 и 85 ккал г-атом. Эти значения коррелируют с атомными радиусами 0,77 1,17 и 1,22 А у углерода в алмазе, у кремния и у германия соответственно. Температура плавления симбатно с теплотой сублимации уменьшается 3900° С (алмаз), 1415 С (Si), 958° С (Ge). [c.132]

    Клеточные структуры, образованные исключительно за счет ионных связей, сопоставимы по прочности со структурами на основе ковалентных связей. Однако межионные силы не обусловливают определенных углов между связями, и кажется маловероятным, что структура соединения, состоящего из простых ионов, может быть очень открытой. Вместо этого имеется тенденция к образованию структур с достаточно плотной упаковкой, определяемых энергией решетки. Общее правило состоит в том, что вокруг иона должно находиться столько ближайших соседей с противоположным по знаку зарядом, сколько соответствует химической формуле и соотношению радиусов иопов, хотя имеется и много исключенийгнз правила соотношения радиусов применительно к простейшим ионным соединениям, например к галогенидам щелочных металлов. Даже в наиболее плотно упакованных структурах имеются вакантные места между сферическими ионами. На рис. 154 показано возможное расположение анионов в некоторой кубической структуре. Если катионы расположены в центрах малых кубов, обозначенных 1—4, то образуется структура типа пЗ, в которой каждый атом или ион имеет четырех соседрй, образующих тетраэдрическое окружение. -Очевидно, имеются свободные пространства в центрах непронумерованных кубов, в которые можно поместить катионы. Если оба ряда пространств заняты, то формула и структура соединения будут отвечать типу СаРа. Таким образом, возникновение тетраэдрических полостей в структуре АХ является следствием того, что отношение радиуса анионов и катионов равно 1 1, а координационное число равно 4. В ионном соединении такое низкое координационное число будет иметь место только тогда, когда отношение наименьшего и наибольшего из ионных радиусов будет меньше 0,41. Это значит, что тетраэдрические полости малы. Наибольшие простые ионы имеют радиусы не более 2,5 А, и соответствующий противоположно заряженный ион в тетраэдрической полости не должен иметь радиус [c.412]


    Мы убедились также в том, что локальные изменения в структуре белка (разд. 7.4) вокруг дистального места в координационной сфере могут быть вызваны любым изменением стерических свойств связанного лиганда, и разумеется, связыванием шестого лиганда с железом, окруженным пятью лигандами. Более отдаленные изменения конформации белка, наблюдаемые на проксимальной стороне порфирина в гемоглобине, по-видимому, связаны (или запускаются ) со смещением железа по нормали к плоскости порфиринового кольца. В пентакоординационном комплексе Ре , например, атом железа смещен примерно на 75 пм от плоскости в сторону гистидинового лиганда. Степень смещения центрального атома зависит от ионного радиуса металла (а следовательно, от степени окисления и в еще большей мере от спинового состояния), от прочности связи с аксиальным лигандом и возмущающего влияния со стороны белка. [c.182]

    Сг), ОНИ не примут приблизительно постоянного значения. Такой ход изменения атомных радиусов объясняется двумя обстоятельствами. С одной стороны, как было отмечено в разд. 3.2, в каждом периоде периодической системы с увеличением атомного номера уменьшаются собственные размеры атома. С другой стороны, подобное увеличение атомного номера (при неизменном координационном числе) ведет к возрастанию числа валентных электронов, приходяш,ихся на один атом, и, следовательно, к увеличению прочности связи. При этом стабилизация значений атомных радиусов начиная с атома Сг объясняется, по Полингу [3.,, За, 36], тем обстоятельством, что дальнейшее увеличение числа -электронов уже не ведет к увеличению прочности связи. Отметим, наконец, характерную особенность металлов подгруппы меди. Малые значения их атомных радиусов, показывают, что в металлической фазе эти элементы нельзя рассматривать в качестве одновалентных. Зависимость прочности связи в кристалле от числа электронов, принимающих участие в связи, отчетлива сказывается на температуре плавления металлов. Как видно из рис. 9.8, [c.97]

    Особенности химии хлора. Второй типический элемент VII группы — хлор — характеризуется меньшей неметаллической активностью по сравнению с фтором. Обусловлено это уменьшением потенциала ионизации и ОЭО, а также возрастанием атомного радиуса и энтальпии диссоциации молекул на атомы (см. выше). Большая прочность молекул С1а по сравнению с молекулами Ра объясняется не только эффектом обратного экранирования в атомах фтора, приводящим к ослаблению связи в его молекулах. В молекулах хлора имеет место дополнительное л-связывание за счет /7-электронов и -орбиталей. л-Связывание возникает по донорно-акцепторному механизму, когда каждый атом хлора одновременно является и донором и акцептором электронной пары (дативная связь). В рамках метода ВС дополнительное л-связывание можно представить схемой  [c.358]

    При вращении электрона по любой стационарной орбите с радиусами г , г , г ... соответствующий этой орбите о б-щий запас энергии его Е , Е , Ед... остается постоянным (электрон энергии не и 3 л у ч а е т). На первый взгляд это противоречит нашим представлениям о движении тела (частицы), связанном всегда с потерей энергии. Но такова особенность движения в микромире (атоме). Когда электрон вращается по первой орбите, запас его энергии минимальный (энергия возбуждения = 0), прочность же связи с ядром максимальная и атом находится в спокойном (устойчивом) состоянии. [c.112]

    Склонность к полимеризации различных галогенпроизводных этилена (различающихся по числу и типу заместителей), а также свойства получаемых полимеров во многом зависят от радиуса атома галогена, прочности и полярности его связи с углеродом. Количественные характеристики указанных свойств приведены в табл. V. 3. Для сопоставления в этой таблице приведены те же данные для атом а водорода. [c.307]

    Соединения I I и I I3 играют определенную роль в количественном анализе. Эти полярные молекулярные вещества построены таким образом, что более тяжелый атом координирует вокруг себя более легкие атомы. Всегда нечетное число атомов в молекуле увеличивается при увеличении соотнощения радиусов НболЩмлл- Так, атом иода может соединяться с семью атомами фтора, но лишь с одним атомом брома. Бром может координировать самое больщое пять атомов другого галогена. Данные по устойчивости межгалогенных соединений, представленные на рис. В.27, дают информацию и о прочности связей в их молекулах. Геометрию молекул можно предсказать исходя из ее электронной конфигурации и типа связей. [c.501]

    Склонность к полимеризации различных галоидопроизводных этилена (отличающихся по числу и типу заместителя), а также свойства получаемых полимеров во многом зависят от радиуса атома галоида, прочности его связи с углеродом и полярности этой связи. Количественные характеристики указанных свойств приведены в табл. 13. Для сопоставления в этой же таблице указаны сведения, характеризуюи1ие атом водорода и его связь с атомом углерода. [c.252]


    Ионные кристаллы состоят из положительных и отрицательных ионов, которые регулярно чередуются в узлах решетки и связаны между собой силами электростатического (кулоновского) взаимодействия. Валентные электроны металла в этом случае полностью передаются более электроотрицательному атому. Ионные кристаллы, как и кристаллы металлов, имеют плотную упаковку. Если такой кристалл построен из ионов разной величины, то ионы с меньшим радиусом располагаются в промежутках между плотно упакованными ионами с большим радиусом. Такую решетку имеют, например, кристаллы Na l, K l, КВг. Силы связи в ионных кристаллах достаточно велики и имеют вполне определенную пространственную ориентацию. Поэтому такие кристаллы характеризуются высокой прочностью, хрупкостью и низкой электропроводностью. Ионные кристаллы галогенидов, сульфидов, сульфатов, фосфатов металлов в ряде случаев образуются на поверхностях трения при использовании смазочных сред, содержащих элементы с высокой степенью электроотрицательности, например, хлор, серу, фосфор и др. В частности, такую структуру имеют PbS, AgF, Agi, HgBr2, нашедшие применение в качестве твердых смазок [75, 83]. [c.57]


Смотреть страницы где упоминается термин Радиус атома прочность связи: [c.396]    [c.191]    [c.335]    [c.168]    [c.260]    [c.458]    [c.18]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Радиусы атомов

Связь прочность



© 2024 chem21.info Реклама на сайте