Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стерические изменения при химических реакциях

    При протекании реакций в жидких средах влияние давления на скорость взаимодействия оказывается весьма неоднозначным. Естественно, что скорость химической реакции под давлением будет зависеть от многих факторов стерических особенностей реагентов, вязкости реакционной среды, изменения каталитического действия и т. д. В настоящее время еще не удается построить теорию химической кинетики при высоких давлениях с учетом всех действующих на процесс факторов. Поэтому кинетические закономерности в средах под высоким давлением приходится выводить с помощью ряда приближений. Сейчас в кинетике химических реакций используются два метода метод активных соударений и метод переходного состояния. [c.172]


    Сушественное значение для хемо-, регио- и стереоселективности химических реакций имеют стерические эффекты и эффекты соседних групп. Так, изменением размера молекулы реагента можно достигнуть большей стереоселективности, если реакционные центры сильно отличаются по стерическому экранированию. [c.452]

    Первичный кинетический изотопный эффект обусловлен тем, что при изотопном замещении изменяется положение нулевого уровня колебательной энергии связи, равного где V — энергия нулевых колебаний, пропорциональная 1/(масса / , /г — постоянная Планка. Вторичные изотопные эффекты возникают при изотопном замещении атомов, не принимающих непосредственного участия в реакции. Этл эффекты. могут быть обусловлены изменением частоты колебаний связей, соединяющих не принимающие участие в реакции атомы, индукционными эффектами, гиперконъюгацией, стерическими эффектами и эффектами растворителя. Здесь мы остановимся на использовании первичных изотопных эффектов для выяснения механизмов химических реакций. [c.98]

    При адсорбции заряженных частиц (ионов) принимают во внимание сдвиг т.н.з. и изменение фгпотенциала, вызывающие повышение или понижение скорости электродного процесса. При адсорбции поверхностно-активных органических молекул образование адсорбционной пленки может влиять на стадию переноса электрона или на сопутствующие химические реакции. Стерические препятствия затрудняют нормальное протекание электродного процесса, а образование ионных пар, напротив, способствует увеличению его скорости. [c.73]

    При сведении различных веществ на основании их взаимных превращений в один стерический ряд возникает вопрос, остается ЛИ при химических реакциях конфигурация молекулы неизменной Оказывается, что при всех превращениях, при которых не происходит разрыв связи у асимметрического атома, конфигурация молекулы всегда сохраняется. Например, при ацилиро-вании спиртов, гидроксил которых присоединен к асимметрическому атому углерода, и при омылении образовавшихся сложных эфиров связь между атомом кислорода и асимметрическим углеродным атомом не разрывается, и потому изменения конфигурации не происходит  [c.593]

    СТЕРИЧЕСКИЕ ИЗМЕНЕНИЯ ПРИ ХИМИЧЕСКИХ РЕАКЦИЯХ [c.275]

    Давление порядка сотен или нескольких тысяч атмосфер не только не увеличивает внутренней энергии тел, но даже приводит к ее снижению. В этой области в основе наблюдающегося влияния давления на протекание химических реакций не лежат коренные качественные изменения строения самих реагирующих молекул (атомов). Однако мы вправе ожидать иногда некоторой деформации молекул (например, изменения валентных углов), которая может сказаться, в частности, в изменении характера стерических препятствий нри химических реакциях.  [c.7]


    Однако и в этой области давлений нельзя исключить влияния на величину константы скорости реакции других факторов, причем это влияние также зависит от давления. Сюда относится влияние среды реакции, особенно сильно сказывающееся, в частности, па протекании ионных реакций и реакций полимеризации при высоких давлениях. К числу факторов, до настоящего времени не исследованных, но весьма существенных для кинетики реакций при высоких давлениях, относится и изменение характера стерических препятствий при увеличении давления. Таким образом, следует полагать, что изменение объема при образовании переходного состояния не может исчерпывающим образом характеризовать влияние давления на величину константы скорости химических реакций. [c.87]

    Поверхностные реакции отличаются от объемных тем, что реагирующие молекулы обладают одинаковой регулируемой степенью доступности и ориентацией. Кроме того, при этом возможна очень сильная интенсификация электрических эффектов. Истинная энергия активации химической реакции может также изменяться, хотя, строго говоря, такая возможность была доказана только для случая твердых поверхностей раздела. На жидких поверхностях может измениться кажущаяся энергия активации реакции. Это связано с тем, что доступность реагирующих групп на поверхности раздела сама по себе зависит от температуры. Поэтому скорость реакций на жидких поверхностях раздела не меняется в такой сильной степени, как на твердых поверхностях. Реакции на жидких поверхностях раздела представляют интерес в связи с возможностью непосредственного определения ориентации молекул, а также с возможностью изменения стерических эффектов в тех случаях, когда это необходимо. Эти реакции обладают также специфическими особенностями, которые состоят в том, что при соответствующем подборе условий опыта в случае жидких поверхностей раздела может меняться не только скорость реакции, но также положение равновесия и состав продуктов реакции. Было показано, что реакция практически полностью ингибируется в результате небольших изменений в упаковке молекул на поверхности раздела. Это явление может быть использовано для объяснения аналогичной высокой избирательности биологических систем. Электрические потенциалы на поверхностях воздух — вода и масло — вода могут быть легко измерены. Полученные данные позволяют понять интересные явления, обусловленные зарядами, которые имеют место при протекании ионных реакций на электрически заряженных поверхностях. [c.310]

    Рассмотрим эти принципы более подробно. При наличии на поверхности носителя функциональных групп, способных вступать в химические реакции с функциональными группами фермента с образованием ковалентных связей получение иммобилизованного фермента сводится к исключительно простой процедуре, аналогичной используемой для физической адсорбции фермента на носителе. Методических различий здесь действительно нет в раствор фермента вводится носитель и фермент на нем адсорбируется, однако адсорбция при химической иммобилизации необратимая — фермент пришивается к носителю одной или несколькими ковалентными связями (рис. П,о). Тесный контакт белка с носителем может оказаться нежелательным, например, из-за неблагоприятного изменения микросреды фермента, стерических и диффузионных ограничений. Выходом из такой ситуации становится отдаление молекулы иммобилизованного фермента от поверхности носителя на некоторое расстояние. Для этой цели применяются сшивающие реагенты различной длины. Они могут быть как простыми бифункциональными (т. е. с двумя одинаковыми или различными по химической природе реакционноспособными группировками), так и весьма сложными полифункциональными реагентами, в том числе построенными из отличающихся по химической природе звеньев с различными по прочности связями между ними. Тем не менее зде сь используется один общий принцип ковалентной иммобилизации — сшивка фермента с носителем посредством сшивающего агента (рис. 11,6). [c.78]

    Выражение стерического фактора через энтропию процесса активации является общим и лишь показывает, что этот множитель всегда связан с организующими или дезорганизующими химический процесс факторами (в смысле упорядочения и разупорядочения), выражаемыми изменением энтропии. Несмотря на общность такой интерпретации стерического фактора, в ней отсутствует явный учет влияния квантовых эффектов на скорость реакций или квантовая эффективность столкновений, хотя энтропия активации должна вычисляться на основе квантовой статистики. До появления метода переходного состояния, являющегося естественным результатом развития квантовой химии, не было воз- можности вычислить фактор, содержащий изменение энтропии конфигурации в общем виде , и изложенная теория по-прежнему обладала точностью, определяемой энергетическим [c.167]


    Цеолиты отличаются от других кислотных катализаторов, например аморфных алюмосиликатов, наличием однородных и небольших пор. Более того, на окклюдированные молекулы воздействует электростатическое поле цеолита. Электростатическое взаимодействие между цеолитами и окклюдированными молекулами должно, безусловно, приводить к состоянию с минимальной свободной энергией для системы цеолит — адсорбат в целом, если реакция окклюдирования достигает равновесия. Поэтому каталитические функции цеолитов легче понять, если выяснить, какие химические изменения адсорбированных молекул реактантов, вызываемые цеолитом, будут приводить к оптимальному изменению энергии. Оптимальное изменение энергии может, по-видимому, достигаться в том случае, когда поляризация адсорбированных молекул моделирует действие воды в исходном цеолите. Для большинства адсорбатов такая поляризация не характерна, хотя для некоторых из них можно наблюдать даже большие эффекты, чем для воды, причем такая адсорбция не приводила к разрушению цеолитной структуры. Величина такого поляризующего эффекта зависит от электростатического поля, доступного для адсорбированных молекул, полярности и поляризуемости адсорбата, стерических факторов, накладываемых цеолитной структурой, и формы адсорбированных молекул. Ясно, что минимизируется не энергия самого цеолита, а энергия всей системы цеолит — адсорбат. [c.399]

    Полученные выражения (V, 25) и (V, 26) показывают, что стерическому множителю можно придать вполне определенный смысл. Как будет показано ниже, величины Аи и АН связаны с энергией активации, определяемой опытным путем, и, следовательно, множитель, содержащий энтропию активации Д5. соответствует стерическому множителю в теории столкновений. Из уравнений (V, 25) и (V, 26) вытекает, что скорость реакции определяется не теплотой активации, а изменением свободной энергии при переходе системы в переходное состояние. Если переход в соответствующее состояние сопровождается большим увеличением энтропии, то, несмотря на большую энергию активации, реакция будет протекать с большой скоростью. И наоборот, процессы, сопровождающиеся уменьшением энтропии, несмотря на малую энергию активации, будут протекать медленно. Любой внешний фактор, уменьшающий свободную энергию активации, будет способствовать увеличению скорости химического процесса. Таким образом, термин стерический множитель, как видно, не соответствует физическому смыслу этой величины и поэтому его лучше назвать энтро пийным множителем. [c.140]

    Разрушение армирующего наполнителя в глубине полимерной матрицы определяется интенсивностью поступления водородных ионов к границе раздела компонентов. Диффузия ионов гидроксония в дефекты связующего происходит в противотоке ионов Na , Са , молекул борной и кремневой кислот. Именно поэтому увеличение числа слоев стеклопластика приводит к повышению химического сопротивления материала и изменению характера его повреждения. Труднорастворимые продукты гидролиза, образующиеся в поверхностных слоях материала, заполняют открытые капилляры и создают стерические затруднения переносу кинетически активных частиц к зоне реакции. Насыщение зоны реакции продуктами взаимодействия приводит к уменьшению скорости процесса (см. рис. 5.26). [c.140]

    В интересах точности не следует утверждать, что биологическая активность определяется каким-либо одним типом функциональных групп (например, фенольными или аминными группами и т. п.) правильнее считать, что данная функциональная группа или определенная часть функциональных групп одного или, возможно, нескольких типов участвует в создании структуры, обусловливающей биологическую активность. Именно эти специфические структурные соотношения можно успешно исследовать при помощи физико-химических измерений. Во-первых, если нельзя показать, что при деблокировании первоначально экранированных функциональных групп биологическая активность восстанавливается, то следует при помощи физических методов установить, что денатурация не имела места. Во-вторых, следует выяснить степень молекулярной и электрохимической гетерогенности производных в ее связи с критерием гомогенности биологической активности. В-третьих, необходимо учесть возможные неспецифические влияния модификации белка на его физическую структуру. Если с одним молем белка вступает в реакцию только один моль реагента, в результате чего образуется совершенно неактивное соединение (как это наблюдается в случае ДФФ-химотрипсина), то можно утверждать, что активность белка обусловлена только одной, хотя и неизвестной до сих пор [141 в], функциональной группой или одним участком белковой молекулы. Однако если интенсивное замещение или блокировка только уменьшают активность, то этот эффект, повидимому, не является специфическим и объясняется общим изменением суммарного заряда или микроскопическим перераспределением. Следует принимать во внимание также и стерические эффекты. В настоящее время большое разнообразие относительно специфических химических реагентов позволяет производить исследование как электростатических, так и стерических эффектов. Это можно сделать, обрабатывая белок, например, такими двумя реагентами, как кетен и недокись углерода, один из которых образует новую нейтральную функциональную группу, а второй превращает основную функциональную группу в группу с кислотными свойствами. Подобным же образом для введения в одно и то же положение положительного или отрицательного заряда, а также для исследования стерических затруднений можно применять диазосоединения. Для такого рода исследований можно воспользоваться целым рядом аналогичных комбинаций. [c.352]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    Селективность процесса димеризации кетильных радикалов и анион-раднкалов определяется электронной структурой частиц (характером делокализацин плотности неспаренного электрона) и стерическими факторами, а также зависит от состава раствора и его температуры. На параметрах поляризационной кривой двойственная реакционная способность промежуточных продуктов сказывается лншь через изменение эффективной константы скорости йд бимолекулярной химической реакции. [c.254]

    Изменение энтропии химической реакции связано с вероятностью образования переходного состояния, т. е. со стерическим соответствием реакционных цетров взаимодействующих реагентов и определяется возрастанием беспорядка растет) или порядка (А5 уменьшается) в контуре (мгновенной структуре) переходного состояния и его ближайшего окруже- [c.197]

    Химические превращения полимеров редко протекают с количественным выходом (до полного израсходования реагирующих групп) в связи с изменением состояния системы и доступности функциональных групп при возрастании степени завершенности процесса. Уже при низких степенях превращения может образовываться гель, и дальнейшее протекание реакции все более затрудняется. Даже через длительное время сохраняется большое число непрореагировавших функциональных групп, зафиксированных в участках геля и лишенных подвижности. В этом случае диффузионная подвижность участков полимерной цепи с функциональными группами практически отсутствует, что должно вызвать заметное снижение кажущейся реакционной способности. Скорость реакций функциональных групп сополимеров резко изменяется при изменении конфигурации макромолекулы и под влиянием стерических факторов. Если молекула полимера содержит одновременно оба типа взаимодействующих между собой функциональных групп, то часто наблюдается кинетически нормальное течение реакции, несмотря на то что условие — наличие в макромолекуле полимера не более одного типа функциональных групп — в этом случае не соблюдается. Классический пример — полиэтерифи-кация, протекающая как при синтезе пленкообразующих олигомеров, так и при превращении водорастворимых пленкообразователей на подложке. Даже в том случае, когда частота соударений функциональных групп заметно уменьшается в результате того, что они связаны с длинными полимерными цепями, снижение скорости химической реакции необязательно. [c.107]

    В ходе этой реакции разрывается я-связь между атомами С, образованная 2рг-орбиталями, перпендикулярными плоскости молекулы, и образуется а-связь за счет одной из этих 2рг-орбиталей и ls-орбитали атома Н. Ясно, что наиболее благоприятным для такого взаимодействия является движение атома Н по направлению этих орбиталей, т. е. перпендикулярно или под некоторым углом, несильно отличающимся от прямого, к плоскости молекулы этилена. Если же атом Н будет приближаться к молекуле этилена в плоскости молекулы, то условия для образования а-связи будут неблагоприятные, а кроме того, возникнет вандерваальсово отталкивание между свободным атомом Н и атомами Н молекулы этилена (рис. 85). Поэтому, чтобы получить выражение для скорости бимолекулярной реакции, нужно умножить число соударений также на стерический фактор, учитывающий вероятность нужной ориентации частиц в момент соударения. Его обычно обозначают р. Таким образом, число актов химического превращения в единицу времени в единице объема, которое можно рассматривать как скорость реакции у , выраженную Нч через изменение числа частиц (а не через изменение числа молей, как обычно принято), равно  [c.277]

    Г. Брауном и сотр. [823] было показано, что константы скорости химического взаимодействия по реакции Меншуткипа производных пиридина, имеющих СНз-группу в а-положении, вследствие стерических затруднений значительно меньше, чел1 этого следовало ожидать на основании правила линейной зависимости изменения свободных энергий (см., например, [824]). Для одного и того же а-замещенного производного пиридина стери-ческий эффект сказывается тем сильнее, чем больше по размерам реагент, взаимодействующий с азотом пиридинового кольца [823]. [c.244]

    Химическая роль измененных электронных структур в фотовозбужденных состояниях была распространена на множество других типов систем. Так, Хавинга отмечал, что изучение фотоиндуцированной термической реакции изомеризации гексатриен-циклогексадиеновой системы в про-и превитаминах О показывает, что существует значительное различие между конфигурациями фото- и термического продуктов [6366] даже в тех случаях, когда оба типа реакций приводят к продуктам одной и той же структуры (т. е. замыкание гексатриена в кольцо производных циклогексадиена). Он предложил объяснение этой селективности с точки зрения стерических факторов и электронной структуры возбужденных частиц, аналогичное современным представлениям об основном состоянии. [c.449]

    Основные сведения о протекании элементарных химических процессов в традиционной химической кинетике извлекаются из измерений, сводящихся к определению скорости изменения концентрации реагентов или продуктов как функции времени, температуры, концентрации самих реагентов или добавляемых в виде примесей веществ и т, п. Получаемая количественная информация представляет одну или несколько констант скорости реакций или их комбинацию в функции температуры. Из этой зависимости на основе более или менее простой теории определяется энергия активации процесса. Достоверность получаемых данных в значительной мере зависит от правильности постулированного механизма реакции, в который входит данный элементарный процесс, и, в частности, от учета всех возможных побочных процессов, которые (Могли бы исказить измерения. Таким образом, здесь видны два недостатка кинетических измерений. Один из них связан с постулированием простой— чаще всего аррениусовской — зависимости константы скорости реакции от температуры k T)=A ехр —E/RT). С накоплением экспериментальных данных принципиально новыми методами исследований и с развитием теории элементарных реакций становилось очевидным, что константа скорости является весьма грубой характеристикой процесса, примени мость которой ограничена условиями теплового равновесия или его малого нарушения в химической системе. Введенное Аре-ниусом понятие энергии активации характеризовало некоторую эффективную величину энергетического барьера, определяемого из температурной зависимости константы скорости реакции. Другая составляющая аррениусовского выражения — пред-экспоненциальный множитель — обычно представляется в виде произведения газокинетического числа столкновений на так называемый стерический множитель. Величина этого. множителя в рамках классических представлений являлась эмпирической поправкой, обеспечивающей согласие экспериментально определенной константы скорости реакции с рассчитанной на основе теории столкновений для твердых сфер. Теория переходного состояния позволила качественно, а также и количественно объяснить возникновение и величину сферического множителя, однако не оставила каких-либо надежд на обобщение этого понятия на неравновесные ситуации. [c.112]


Смотреть страницы где упоминается термин Стерические изменения при химических реакциях: [c.452]    [c.137]    [c.334]    [c.98]    [c.149]    [c.133]    [c.358]    [c.17]    [c.199]   
Смотреть главы в:

Успехи стереохимии  -> Стерические изменения при химических реакциях




ПОИСК







© 2024 chem21.info Реклама на сайте