Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протомеры

    Одним из наиболее изученных 4 ферментов, множественность форм которого детально изучена методом гель-электрофореза, является ЛДГ, катализирующая обратимое превращение пировиноградной кислоты в молочную. Пять изоферментов ЛДГ образуются из 4 субъединиц примерно одинакового размера, но двух разных типов. Поскольку Н-протомеры несут более выраженный отрицательный заряд при pH 7,0—9,0, чем М-про-томеры, изофермент, состоящий из 4 субъединиц Н-типа (Н,), при электрофорезе будет мигрировать с наибольщей скоростью в электрическом поле к положительному электроду (аноду). С наименьщей скоростью будет продвигаться к аноду изофермент М в то время как остальные изоферменты будут занимать промежуточные позиции. Следует подчеркнуть, что изоферменты ЛДГ, обладая почти одинаковой ферментативной активностью, различаются некоторыми физико-химическими свойствами молекулярной массой, электрофоретической подвижностью, отнощением к ак- [c.128]


    Олигомер — система, состоящая из определенного числа идентичных субъединиц — протомеров. [c.186]

    Мономер — полностью диссоциированный протомер или белок, не состоящий из идентичных субъединиц. [c.186]

    Рассмотрим теперь количественные аспекты гетерологических взаимодействий, приводящих к образованию замкнутых колец. Пусть К — константа образования, а А0° — изменение стандартной свободной энергии для присоединения /-конца протомера Р к а-концу другого протомера Р, в результате чего образуется димер Ра [уравнение (4-39)]. На второй стадии присоединяется третий протомер. Заметим, что при этом возникают два новых а/-контакта, в связи с чем ДС для второй стадии равно 2ЛС°, а /Сг — К - Результирующая константа образования для процесса сборки тримера из трех протомеров и изменение свободной энергии равны  [c.271]

    Рассмотрим теперь гипотетический случай, когда протомер Р непрерывно синтезируется в клетке и сразу же распадается в результате параллельно протекающей метаболической реакции на неспособные к ассоциации продукты. При этом обе реакции сбалансированы таким образом, что стационарная концентрация протомера [Р] остается все время равной 10 М. Предположим, что значение К для единичного а/-взаи-модействия, приводящего к образованию димеров и тримеров (колец), равно 10 (или А(5 ° = —22,8 кДж моль ). Спрашивается чему будет равна концентрация димеров и тримерных колец в клетке в равновесии, если концентрация Р равна 10 М Используя уравнение (4-39), получаем, что концентрация димеров Ра равна Ю -(10"=) = 10 М. (Заметим, что при такой концентрации димеров концентрация составляющих их мономеров эквивалентна 2-10 М.) Концентрация колец, [Рз], равна (10 )3-( 10" ) = 10 М (концентрация соответствующих мономерных единиц эквивалентна З-Ю" М), Таким образом, 99,6% суммарного количества протомеров Р, присутствующих в клетке, будет входить в состав тримеров (10 =+0,2-10 +300-10 М), 0,33%—в состав мономеров и только 0,07% —в состав димеров. Следовательно, одновременное образование двух гетерологических связей, приводящее к замыканию кольца, делает реакцию ассоциации, описываемую уравнением [c.272]

    Как правило, эти особенности объясняются наличием у фермента четвертичной структуры и взаимодействием субъединиц. Тем самым, поведение фермента кооперативно — сродство к субстрату и каталитическая активность данной субъединицы (протомера) зависят от того, в каких состояниях находятся остальные субъединицы — связали они субстрат или нет. [c.199]

    Как изменится относительное содержание небольших колец внутри клетки, если скорость превращения протомера Р в форму, не способную к ассоциации, вдруг сильно возрастет, так что концентрация Р упадет до 10 М Определите сами равновесные концентрации мономерных единиц Р, димеров Рг и тримеров Рз, если К останется при этом равной 10 . Здесь и проявится особенность кооперативных процессов, которая состоит в том, что они характеризуются зависимостью от концентрации не в первой, а в более высокой степени. [c.273]


    Отличительной особенностью ряда аллостерических ферментов является наличие в молекуле олигомерного фермента нескольких активных центров и нескольких аллостерических регуляторных центров, пространственно удаленных друг от друга. В аллостерическом ферменте каждый из двух симметрично построенных протомеров содержит один активный центр, связывающий субстрат 8, и один аллостерический центр, связывающий эффектор М т.е. 2 центра в одной молекуле фермента (рис. 4.4). Получены доказательства, что для субстрата аллостерические ферменты, помимо активного центра, содержат и так называемые эффекторные центры при связывании с эффекторным центром субстрат не подвергается каталитическому превращению, однако он влияет на каталитическую эффективность активного центра. Подобные взаимодействия между центрами, связывающими лиганды одного типа, принято называть гомотропными взаимодействиями, а взаимодействия между центрами, связывающими лиганды разных типов, —гетеротропными взаимодействиями. [c.126]

    Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки между собой отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных [c.127]

    РИС. 4-16. Возможные формы димеризующихся белков, существующих в двух конформационных состояниях в каждом протомере имеется один центр связывания с лигандом X. Пунктирными стрелками указаны равновесные процессы, рассмотренные Моно, Уайменом и Шанжё, а сплошными — Кошландом и др. [61, 62]. Жирные стрелки относятся к простейшей модели индуцированного соответствия, не учитывающей диссоциации димера. (Заметим, что, хотя все стрелки имеют только одно направление, соответствующие процессы обратимы.) Величины Ках и Квх считаются одинаковыми для всех субъединиц независимо от того, в какой форме они находятся — в мономерной или димерной. [c.300]

    Предполагается, что протомер как целое может находиться в двух или нескольких конформационных состояниях, сохраняя при этом свою симметрию. Сродство стереоспецифических центров к лиганду изменяется при изменении состояния олигомера. Такая система кооперативна. [c.458]

    При обобщении уравнения (7,63) на систему с п протомерами, получаем [c.459]

    Допустим, ято, наряду с субстратом 5 на димер действуют ингибитор I и активатор А и каждый из двух протомеров содержит по три активных центра — по одному для 8, I и А. Считая для простоты, что димер имеет сродство к / только в Г-состоянии, и к Л — только в / -состоянии, получаем при 1 функцию насыщения фермента субстратом [c.459]

    Ферритин — это крупный олигомерный белок, состоящий из 24 идентичных протомеров, молекулярная масса -450 kDa. Протомеры ферритина образуют сферическую структуру внутри которой имеется полость. [c.415]

    В слабокислых и нейтральных растворах молекула гемоглобина под действием таких веществ, как мочевина, ацетамид, формамид, взятых в концентрации 4—8 моль/л, распадается на отдельные протомеры. Имея различный аминокислотный состав, а следовательно, и заряд, а-и Р-цепи гемоглобина в электрическом поле движутся с различной скоростью. Вследствие этого на электрофоре-грамме можно различить две полосы белка. [c.39]

    На рис. 4-6 схематически изображены субъединицы (протомеры), содержащие взаимно комплементарные участки а и . Две такие молекулы стремятся соединиться друг с другом так, чтобы участок а одного протомера оказался связанным с участком ] другого. При этом с одной стороны димера остается свободный участок а, а с другой — свободный участок ], к которым могут присоединяться другие протомеры. В некоторых случаях таким способом образуются длинные цепн. [c.270]

    Установлено, что многие лекарственные вещества влияют на конформации мембран и мембранных липидов. Шанжё и соавторы рассматривали мембрану как упорядоченную кооперативную систему, построенную из взаимодействующих субъединиц. В этих работах триггерные свойства мембраны трактуются на основе теории, аналогичной теории косвенной кооперативности ферментов, развитой Моно, Уайменом и Шанжё (см. 6.7). Каждая субъединица имеет рецепторный центр для данного специфического лиганда, сродство к которому меняется при изменении ее конформации. В упорядоченной решетке мембраны субъединицы (протомеры) взаимодействуют со своими соседями, чем и определяются кооперативные свойства. В зависимости от активности лиганда и энергии взаимодействия протомеров ответ мембраны на присоединение лиганда может быть постепенным или S-образным, становясь в пределе переходом все или ничего — фазовым переходом. Формальная модель описывает действие колицинов, дает качественное объяснение ряду фактов, в частности, тому, что различные родственные лекарственные вещества вызывают различные максимальные ответы мембраны. Первичное действие многих лекарств локализовано в мембранах и имеет кооперативный характер. Многие лекарства действуют в очень малых концентрациях (вплоть до 10 М) и обладают высокой специфичностью. Воздействие лекарства иа мембранный рецептор определяется молекулярным узнаванием, но о природе этих рецепторов мы еще мало знаем (см. 11.7). [c.340]


    На рис. 4-7 приведены красивые спиральные структуры четырех разных типов, образованные из отдельных молекулярных фрагментов. Это пиль Е. oli, нить актина (F-актин) из мышечного волокна, жгутик бактерии ( . соИ) и вирион вируса табачной мозаики. Считается, что каждая из этих структур состоит из большого числа протомеров одного типа. Наиболее детально изучена структура вирусной частицы. Известна, в частности, последовательность 158 аминокислотных остатков, образующих каждую из субъединиц вирусного белка (мол. вес=17 500) число субъединиц на частицу равно примерно 2200, из них сформирова- [c.273]

    Вполне разумное предположение о симметричной упаковке субъединиц и электронно-микроскопические данные об их квадратном, пента-гональном и гексагона 7ьном расположении позволили сделать вывод, что протомеры стремятся объединяться с образованием симметричных структур. Рассмотрим предс1авленный на  [c.291]

    Многие ферменты, чехлы вирусов и более сложные молекулярные структуры построены из протомерав двух или большего числа типов. Наиболее детально изучен гемоглобин — тетрамерный белок (02 2), построенный из двух хотя и похожих, но не идентичных субъединиц, аир (обе имеют мол. вес, равный 16100). Аминокислотные последовательности субъединиц весьма сильно различаются, и тем не менее укладка полипептидных цепей в обеих субъединицах гемоглобина почти одинакова (и весьма сходна с укладкой полипептидной цепи в мономерном миоглобине) [56]. Если бы не эти различия, молекула гемоглобина была бы высокосимметричной с указанным на рис. 4-9, В типом взаимодействий и тремя осями симметрии 2-го порядка. Принято говорить, что молекула гемоглобина имеет одну истинную ось симметрии 2-го порядка и две оси псевдо-2-го порядка. В ней имеется два набора чисто изологических взаимодействий (между двумя а-субъеди-ницами и двумя р-субъединицами) и две пары несимметричных взаимодействий (между а- и р-субъединицами). На прекрасных рисунках Дикерсона и Гейса [57] ясно видна почти симметричная ориентация различных участков полипептидной цепи. [c.296]

    Большинство зависимых от биотина карбоксилаз относится к крупным белкам. Так, протомер пируваткарбоксилазы, содержаш,ий молекулу биотина, имеет мол. вес 410 000. В присутствии аллостерического активатора, цитрата, протомер полпмеризуется с образованием крупной формы с мол. весом 4-10 —8-10 . От 10 до 20 протомеров ассоциируют, образуя нити длиной 400 нм и толщиной 7—10 нм. Только такая полимеризованная форма проявляет ферментативную активность. Аце-тил-КоА—карбоксилаза из печени цыпленка и печени крысы обладает сходными свойствами мономер (мол. вес 410 000) ассоциирует в полимеры с мол. весом 8-10 . [c.200]

    Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладаюгцих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярно-го образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не главновалентными связями, а нековалентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чагце всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входягцих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чагце построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами —от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых а- и двух 3-полипептидных цепей, т.е. представляет собой тетрамер. На рис. 1.23 представлена структура молекулы гемоглобина, а на рис. 1.24 хорошо видно, что молекула гемоглобина содержит четыре полипептидные цепи, [c.68]

    К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Однако только для немногих белков, в том числе для молекулы гемоглобина, методом рентгеноструктурного анализа расшифрована четвертичная структура . Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности—универсальному принципу, свойственному живой природе. Структура белка после его синтеза в рибосоме может частично подвергаться модификации (посттрансляционный процессгшг) например, при превращении предшественников ряда ферментов или гормонов (инсулин). [c.71]

    В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу—мультимером (рис. 4.5 см. главу 1). [c.127]

    Особую группу ферментов составляют надмолекулярные (или мультимолекулярные) ферментные комплексы, в состав которых входят не субъединицы (в каталитическом отношении однотипные протомеры), а разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Отличительными особенностями подобных муль-тиферментных комплексов являются прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве ( путь превращения в пространстве и времени). Типичными примерами подобных мультиферментных комплексов являются пируватдегидрогеназа и а-кетоглутаратдегидрогеназа, катализирующие соответственно окислительное декарбоксилирование пировиноградной и а-кетоглутаровой кислот в животных тканях (см. главу 10), и синтетаза высших жирных кислот (см. главу 11). Молекулярные массы этих комплексов в зависимости от источника их происхождения варьируют от 2,3 10 до 10 10 Ассоциация отдельных ферментов в единый недиссоциирующий комплекс имеет определенный биологический смысл и ряд преимуществ. В частности, при этом резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться при действии изолированных ферментов. Ряд таких мультиферментных комплексов, иногда называемых ферментными ансамблями, структурно связан с какой-либо органеллой (рибосомы, митохондрии) или с биомембраной и составляет высокоорганизованные надмолекулярные системы, обеспечивающие жизненно важные функции, например тканевое дыхание (перенос электронов от субстратов к кислороду через систему дыхательных ферментов). [c.129]

    Другая модель косвенной кооперативности, предназначенная для трактовки свойств АСФ, была предложена Моно, Уайманом и Шанжё (модель МУШ [65]). Молекула белка представляет собой олигомер, состоящий из двух или большего числа идентичных субъединиц — протомеров, занимающих эквивалентные пространственные положения. Тем самым, молекула обладает элементами симметрии. Она может быть построена изологично или гетерологично в последнем случае возможна неограниченная длина олигомера (рис. 7.29). Каждому лиганду (субстрату или АСЭ) отвечает один активный центр протомера. [c.457]

    Непосредственно синтез новой цепи ДНК осуществляется при помощи ДНК-полимераз. У прокариот найдено три типа этих ферментов, а именно ДНК-полимераза I, ДНК-полимераза II и ДНК-полимераза III. ДНК-полимераза I — протомер с молекулярной массой около 100 kDa. Фермент полифунк-ционален он обладает полимеразной и нуклеазной активностью. Принимает участие в процессах репарации ДНК. Роль ДНК-полимеразы П пока не совсем ясна, известно, однако, что мутации генов, ее кодирующих, не сказываются на жизнеспособности клеток. Из этих ферментов ДНК-полимераза П1 оказалась наиболее функционально значимой именно этот фермент катализирует наращивание полинуклеотидной цепи ДНК. Он является олигомером и состоит из семи неравнозначных субъединиц, одна из которых обладает наибольшей полимеразной активностью. Оказалось, однако, что ДНК-полимераза III не может самостоятельно присоединяться к цепи ДНК и инициировать образование новой цепи, поэтому синтез должен быть инициирован какой-то другой структурой. Такой структурой является фрагмент РНК, который синтезируется в сайте инициации и к которому присоединяется ДНК-полимераза. Этот фрагмент называется праймером, а РНК-полимераза, катализирующая его образование, — праймазой. [c.451]

    В состав молекулы фермента а- и р-субъединицы входят в экви-молярных количествах. Протомер ар ( 155 000) яв 1яется, таким образом, практически минимальной структурной единицей Ка ,К АТФазы. [c.623]


Смотреть страницы где упоминается термин Протомеры: [c.198]    [c.252]    [c.271]    [c.294]    [c.296]    [c.127]    [c.127]    [c.201]    [c.202]    [c.41]    [c.530]    [c.530]    [c.117]    [c.118]    [c.623]    [c.132]   
Биохимия Том 3 (1980) -- [ c.268 ]

Стратегия биохимической адаптации (1977) -- [ c.6 ]

Биохимический справочник (1979) -- [ c.25 ]

Химия биологически активных природных соединений (1970) -- [ c.152 , c.155 ]

Биохимия человека Т.2 (1993) -- [ c.47 , c.48 , c.72 ]

Биохимия человека Том 2 (1993) -- [ c.47 , c.48 , c.72 ]




ПОИСК







© 2024 chem21.info Реклама на сайте