Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возник

    При неблагоприятном гранулометрическом составе зернистого материала могут образовываться более уплотненные зоны, оказывающие значительное сопротивление прохождению газа, вследствие чего в слое возникают каналы, через которые газ проходит избирательно. Это явление называется канальным проскоком или каналированием и характерно для очень тонких порошков. [c.71]

    Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород. [c.58]


    Предположим далее, что газообразный водород существует не в виде отдельных атомов, а в виде молекул водорода, каждая из которых состоит из двух атомов, а газообразный хлор состоит из молекул хлора, также двухатомных. В этом случае 100 атомов водорода — это 50 далеко отстоящих друг от друга частиц водород-водород, а 100 атомов хлора — это 50 далеко отстоящих друг от друга частиц хлор-хлор, т. е. всего 100 частиц. При образовании хлорида водорода происходит перегруппировка частиц возникает атомная комбинация водород-хлор. При этом 100 атомов водорода и 100 атомов хлора дают 100 молекул хлорида водорода (каждая из молекул содержит по одному атому каждого вида). Следовательно, 50 молекул водорода и 50 молекул хлора образуют 100 молекул хлорида водорода. Этот вывод совпадает с результатами наблюдений, которые показывают, что один объем водорода и один объем хлора дают два объема хлорида водорода. [c.60]

    Берцелиус утверждал, что силы, удерживающие атомы в неорганической молекуле или в органическом радикале, имеют электрическую природу (что в конечном счете оказалось справедливым). Чтобы такие силы возникали, каждая молекула должна содержать положительно и отрицательно заряженные части, поскольку притяжение возможно только между противоположно заряженными частями. [c.78]

    Как известно, между положительно и отрицательно заряженными точками устанавливается электрический потенциал (электрическое напряжение). Под действием такого напряжения заряды перемещаются от точки с большим потенциалом к точке с меньшим потенциалом. Таким образом возникает электрический ток, который стремится выравнять разность потенциалов между двумя точками электрического поля. [c.145]

    Плюккер впаял в трубки два электрода, создал между ними электрический потенциал и получил электрический ток. Под действием тока в трубках возникало свечение ( эффект накаливания ), характер которого зависел от глубины вакуума. При достаточно глубоком вакууме свечение в трубке исчезало, и только вблизи анода было заметно зеленое свечение стекла трубки. [c.147]

    Рентген пришел к выводу, что когда катодные лучи наталкиваются на анод, возникает какое-то излучение, которое проходит сквозь стекло трубки, картон и воздействует на материалы, находящиеся вне трубки. Рентген переносил фотобумагу в соседнюю комнату, но и там она продолжала светиться до тех пор, пока была включена установка катодных лучей, т. е. открытое им излучение проникало даже сквозь стены. Это всепроникающее излучение Рентген назвал Х-лучами . (Со временем было установлено, что рентгеновские лучи по своей природе аналогичны свету, но обладают гораздо большей энергией.) [c.152]


    Атом углерода чувствует себя лучше всего тогда, когда все его четыре связи торчат в разные стороны. Если же две из них вынуждены расположиться между соседними атомами углерода, то в молекуле возникает некоторое напряжение. [c.38]

    В 1914 г. японские химики обнаружили, что если на достаточно долгое время приложить к коже подопытных животных некоторые вещества, входящие в состав каменноугольной смолы, то у животных в этих местах возникают злокачественные опухоли. В 1930 г. английские химики открыли в каменноугольной смоле особый углеводород, состоящий из пяти сконденсированных бензольных колец, который и вызывает рак. Такие вещества получили название канцерогенных. С тех пор в каменноугольной смоле, да и в других веществах были обнаружены десятки разных канцерогенных веществ. Не так давно незначительные количества канцерогенов обнаружены в табачном дыме. Врачи считают, что существует связь между курением сигарет и раком легких, который в последнее время получил значительно большее распространение, чем раньше. [c.62]

    Во время второй мировой войны проблема получения толуола из нефти стояла особенно остро. После этого, особенно в США, возник огромный спрос на бензол, что явилось причиной постановки опытов получения его из нефти. Этот чрезвычайный спрос па бензол был обусловлен постоянно возрастающим объемом его переработки. Достаточно назвать лишь некоторые важнейшие продукты его переработки — стирол, арилсульфонаты, фенол, найлон, ДДТ, гексахлорциклогексан, малеиновая кислота, промежуточные продукты в производстве красителей и т. д. [c.101]

    Исследователи не считают возможной полимеризацию метиленовых групп на катализаторе. Они считают возможным, что высокомолекулярные углеводороды, по крайней мере на железных катализаторах, образуются из получающихся на поверхности катализатора за счет адсорбции СО каких-то комплексных соединений. Этот комплекс немедленно реагирует с дополнительными молекулами СО, давая кислородсодержащий комплекс, который сразу же гидрируется с потерей кислорода. Образующийся продукт удаляется с поверхности катализатора в виде углеводорода или вновь присоединяет СО. При этом возникает новый комплекс, содержащий на 1 атом углерода больще, чем предыдущий. [c.89]

    Эти обстоятельства указывают па то, что при температурах выше 250° на некоторых поверхностях возникают термические цепные реакции, которые в отличие от цепных реакций с участием свободных радикалов не подав,пяются кислородом. [c.157]

    Хлорированные продукты, отбираемые из колонки 14, собираются в сосуде 22. Так как эти продукты представляют собой смесь моно- и дихлоридов (а в некоторых случаях и более высокохлорированных производных), их подвергают вторичной ректификации в нескольких колонках. Сначала в колонке 23 отделяют монохлорид от ди- и полихлоридов. Монохлорид отгоняется в качестве головного погона, а ди-и полихлорид переходят в остаток. Первые, если в этом возникает необходимость, могут быть дополнительно прохлорированы для превращения в дихлор иды Для ЭТО.ГО через вентиль 34 насосом 27 они возвращаются через расходомер и нагреватель 33 снова в процесс. [c.163]

    Углеводород поступает в кольцевое пространство 3 и через четыре тангенциальные прорези подводится в смесительную камеру 2, в которую через две форсунки с боковыми отверстиями подается также хлор. При этом возникает завихренный газовый поток, поступающий в собственно реакционное пространство и поддерживающий зерна катализатора во взвещенном состоянии. [c.171]

    Комплексное соединение хлористого алюминия обладает еще большей активностью, чем алюминий, и его можно применять для последующих циклов процесса. При этом в большинстве случаев реакция начинается уже при комнатной температуре и возникает необходимость охлаждать реакционную смесь. Таким образом, исходя из небольшого количества активированного алюминия, возможно получать большие количества синтетических смазочных масел. [c.241]

    Как уже упоминалось, нитрование при 170—180° происходит очень быстро, поэтому ограничение скорости нитрования вызывается только аппаратурными соображениями, так как при чересчур быстрой подаче азотной кислоты возникает опасность сильного вспенивания. [c.306]

    При нитровании парафинового углеводорода нормального строения образуются первичные или вторичные нитропарафины в зависимости от того, входит ли нитрогруппа в метильный или в метиленовый радикал. Если в углеводородном скелете происходит изомеризация (разветвление молекулы), что наблюдается в большей или меньшей степени при применении технических продуктов, то нитрогруппа может войти и в ме-тиновую группу. В этом случае наряду с первичными и вторичными нитропарафинами возникают и третичные. [c.311]

    В темноте -гептан или циклогексан, не реагирует с хлористым оксалилом аза-имодействие не наступает даже пр длительном кипячении с обратным холодильником. Однако при облучении актиничным светом сразу же возникает реакция, протекающая по следующему уравнению  [c.503]

    Алкильные радикалы могут возникать и в темноте в результате распада органических перекисей, например перекиси бензоила. Реакция в этом случае протекает так же, как и фотохимическая. [c.503]


    В случае обратных реакций, например дегидрогалоидирования, возникают точно такие же зависимости. Так, если связанный с галоидом углерод расположен между двумя метиленовыми группами, при отщеплении галоидоводорода образуются два изомерных олефина в экви-мол ярном соотношении. [c.551]

    Необходимость многоступенчатой фильтрации объясняется тем, что микрозагрязнения в топливах появляются как в результате засорения топлива извне (атмосферной пылью, продуктами коррозии топливопроводов и резервуаров и т. п.), так и в результате непрерывного окисления топлива в процессе хранения. Таким образом, если топливо было тщательно очищено от загрязнений при сливе его в резервуары, то через определенный срок хранения в топливе опять накапливаются микрозагрязнения и необходимость фильтрации возникает вновь. [c.45]

    При прочих равных условиях интенсивность кавитации увеличивается при использовании топлив с большим давлением насыщенного пара. Наибольшая кавитация возникает, если топливо кипит, т. е. когда давление насыщенных паров топлива равно внешнему давлению. Таким образом, чем больше давление насыщенных паров топлива, тем меньше высота, на которой это топливо закипит и будет наблюдаться наибольшая кавитация. Так, например, топливо с давлением паров, равным 360 мм рт. ст. при 20° С, закипит на высотке 9,5 км, а топливо с давлением паров, равным 40 мм рт. ст. при 20° С, закипит на высоте 20,5 км. [c.53]

    Кроме HgS.npH пиролизе обраауетоя некоторое количеотво сере-окиси углерода ( OS) < нак правило, не более тысячных долей про центами проблем о ее удалением обычно не возникает. [c.115]

    При обработке опытных данных или результатов обследования реакторов, состоящих из ряда секций, нескольких аппаратов либо разбитых на ряд участков, возникает необходимость опредоления эквивалентной изотермической температуры всего процесса в делом, т. е. температуры, отвечающей изотермическому течению процесса в тех же условиях. [c.270]

    Европейцы узнали так много нового не известного великид греческим философам, что возникало ощущение, что греки в конш концов-были обычными людьми, которые, как и все люди, могл ошибаться, и поэтому необязательно принимать на веру все и утверждения. Европейцы доказали свое превосходство в навига ции, следовательно, можно было попытаться превзойти их и в дру гих науках. [c.25]

    В 1733 г. французский химик Шарль Франсуа де Систернэ Дюфе (1698—1739) установил, что существуют два вида электрических зарядов один из них возникает на стекле ( стеклянное электричество ), а другой — на янтаре ( смоляное электричество ). Вещество, несущее заряд одного вида, притягивает вещество, несущее заряд другого вида, но два одинаково заряженных вещества взаимно отталкиваются. [c.57]

    Приблизительно в 1875 г. английский физик Уильям Крукс (1832—1919) сконструировал трубки, в которых можно было получить более глубокий вакуум (трубки Крукса). Исследовать электрический ток, проходящий через вакуум, стало удобнее. Казалось совершенно очевидным, что электрический ток возникает на катоде и движется к аноду, где он ударяется в окружающее анод стекло и создает свечение. Чтобы доказать справедливость такого понимания явления, Крукс помещал в трубку кусок металла, прн этом на стекле на противоположном от катода конце появлялась тень. Однако в то время физики не знали, что представляет собой электрический ток. Они не могли вполне определенно сказать, что же все-таки движется от катода к аподу, правда им доподлинно было известно, что этот поток движется прямолинейно (поскольку тень от металла была четко очерчена). Не придя ни к какому выводу относительно природы этого явления, физики отнесли его к излучению , и в 1876 г. немецкий физик Эуген Гольдштейн (1850—1930) назвал этот поток катодными лучами. [c.147]

    В 1886—1887 гг. Герц, пропуская электрическую искру через воздушный зазор между двумя электродами (так называемый искровой промежуток), обнаружил, что при облучении катода ультрафиолетовым светом искра возникала легче. Это и другие подобные явления, наблюдаемые при освещении металлов светом, как было установлено впоследствии, обусловлены фотоэМктрическим эффектом .  [c.150]

    С технической точки зрения решающее значение нрн синтезе Фишера— Тропша имеют, во-первых, очень большая теплота реакции каталитического гидрирования окиси углерода и, во-вторых, необходимость очень точного соблюдения постоянной температуры синтеза, особенно иа кобальтовом катализаторе, где она должна выдерживаться практически в пределах 1°. В противном случае значительно возрастает нежелательное метанообразование. Кроме того, при высоких температурах наблюдается отложение углерода на катализаторе, приводящее к быстрой его дезактивации. Из уравнений реакции на кобальтовом и железном катализаторах можно рассчитать, что на 1 нм сйнтеэ-газа, вошедшего в реакцию, выделяется по меньшей мере 600—700 ккал, т. е. количество тепла, достаточное (в адиабатических условиях) для нагрева синтез-газа примерно до 1500°. Отсюда ясно, какие конструктивные трудности возникают при эксплуатации установок крупного размера в связи с требованием соблюдать практически постоянную температуру синтеза. [c.67]

    В зависимости от температуры в генераторе меняется и глубина конверсии метана. Так как для достаточно полной конверсии требуются очень высокие температуры, то возникает опасность шлакования генератора. В связи с этим при р аботе по описанному способу необходимо использовать кокс с высокоплавкой золой. [c.79]

    Если к водяному газу примешивается коксовый газ, то при тонкой сероочистке часто возникают значительные трудности, связанные с тем, что в коксовом газе содержатся небольшие количества смолы и других конденсирующихся примесей, которые частично остаются неразложен-ными, несмотря на то, что они в реакторе проходят через раскаленный слой топлива. Сказанное выше относится особенно к серусодержащим соединениям, которые, оставаясь неразложенными, несмотря на крайне незначительную концентрацию (несколько сотых грамма на м ), настолько затрудняют работу сероочистки, что иногда не представляется возможным обеспечить необходимую глубину очистки синтез-газа от органической серы. [c.82]

    При этом процессе замещения, протекающем при высоких температурах в полной темноте, возникают значительные трудности вследствие постепенного образования на катализаторе отложений кокса и смолистых веществ, загрязняющих и дезактивирующих поверхность, катализатора. В то же время легко может произойти забивание трубопроводов и смесительных форсунок. Поэтому применителыго к парафиновым углеводородам метод гетерогеипого каталитического хлорирования не имеет важного значения, [c.153]

    Атомы хлора, образующиеся при фотохимическом хлорироаании-под действием лучистой энергии, в данном случае возникают в результате термической диссоциации молекулярного хлора. [c.156]

    Такие термические цепи возникают вследствие неравномерного распределения значительных количеств энергии, выделяющихся при хлорировании (тепловой эффект реакции хлорирования достигает около 27 ккал/г-мол). Образующиеся в результате этого возбужденные молекулы сталкиваются до передачи их энергии стенке с другими молекулами и, следователгшо, являются источником активации, необходимой для протекания термичсгко цет он рслкцнн. [c.157]

    При чисто термическом хлорировании, как и при каталитическом хлорировании в присутствии стационарных катализаторов, возникают серьезные трудности. В результате выделения элементарного углерода и смолистых продуктов в трубопроводах и других частях аппаратуры образуются отложения, которые постепенно приводят к полному забиванию системы. Одновременно падает активность катализатора вследствие образования на нем графитоподобных отлржений. [c.170]

    Алкильные радикалы тотчас же вступают в реакцию с ЫОг-радика лами, таким образом образуются низкомолекулярные нитросоединения Низкомолекулярные алкильные радикалы могут также возникать в зна чительной мере путем распада высокомолекулярных алкилрадикалов Оптимальные условия при газофазном нитровании наступают при оди наковом количестве алкильных радикалов и ЫОг-радикалов. Но если один из радикалов находится в избытке, то это связано с неполным обменом. [c.286]

    Здесь возникают приблизительно такие же явления, как и при хлорировании и сульфохлорировании, но лолинитросоединения подвергаются окислению и дальнейшему изменению этим объясняется образование углекислоты и жирных кислот, содержащих нитрогруппы. [c.306]

    Согласно работам П. Баумгартена [27] пиридин реагирует с хлористым сульфурилом, образуя пиридинсульфохлорид, причем возникает свободный хлор, который вызывает зеленую окраску. Эквивалентное количество двуокиси серы связывается с пиридином. По млению Шумахера и Штауффа действие пиридина состоит исключительно в том, что к началу реакции создается высокая концентрация хлора, в результате чего резко сокращается продолжительность индукционного периода. [c.372]

    Хлор, связанный с серой, гидролизуется аначительно легче, чем хлор хлористого алкила (хлор в углеродной цепи), поэтому в практике сульфохлорирования этот хлор обозначают как гидролизующийся. Однако в условиях, при которых гидролизующийся хлор реагирует количественно, хлор в углеродной цепи тоже частично вступает в реакцию со щелочью. Вследствие этого возникает ошибка, увеличивающаяся с возрастанием содержания хлора в углеродной цепи, что видно из табл. 112 [33]. [c.375]

    Рихе принимал, что первичным- продуктом является алкилгидро-перекись, которая возникает в результате внедрения молекулярного кислорода между атомами углерода и водорода  [c.465]

    Как отмечалось выше, перекнсные соединения могут инициировать реакцию и поддерживать ее протекание. Поскольку при самой реакции возникает перекисное соединение, которое вследствие своей нестойкости может распадаться на радикалы, сульфоокисление в данных условиях протекает автокаталитически. Как и при других цепных реакциях, эти радикалы могут исчезать в результате рекомбинации или реакции со стенкой, что влечет за собой обрыв цепи. Однако благодаря распаду гьро,межуточнЫ(Х СО еди нен ий, сульфоновых перкислот вов-никают -новые радикалы  [c.484]

    При перекачке топлива по топливной системе на отдельных ее участках давление, под которым находится топливо, может быть даже меньше внешнего атмосферного давления. Следовательно, для определения высотности топливной системы необходимо сопоставлять давление насыщенных паров топлива не с атмосферным давлением, а с наименьшим давлением, под которым находится топливо в топливной системе. Таким давлением является давление на входе в топливный насос (р )- Если давление насыщенных паров топлива (Рндс) ньше, чем давление на входе в насос, то заметной кавитации нет и насос работает нормально. Если давление насыщенных паров топлива равно или больше, чем давление на входе в насос, то возникает кавитация, производительность насоса резко уменьшается, прокачка топлива нарушается. [c.53]


Смотреть страницы где упоминается термин Возник: [c.17]    [c.56]    [c.62]    [c.73]    [c.130]    [c.3]    [c.30]    [c.62]    [c.368]   
Перемешивание в химической промышленности (1963) -- [ c.162 , c.179 ]




ПОИСК







© 2025 chem21.info Реклама на сайте