Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки определение аминокислотного состава

    ДНФ-фр акцию, полученную из смесей с известным количеством белка или пептида, хроматографируют вместе с определенным количеством контрольных ДНФ-аминокислот, после чего ДНФ-аминокислоты элюируют из бумаги и определяют их содержание фотометрически по калибровочной кривой, построенной для ДНФ-аминокислот. Таким способом можно определить концевые группы белков и пептидов, число полипептидных цепей белков, минимальный молекулярный вес белков и аминокислотный состав белковых гидролизатов. [c.272]


    Растворимые белки монодисперсны, т. е. имеют строго определенный аминокислотный состав и чередование отдельных остатков аминокислот. [c.336]

    В виде этих же производных на колонке с неподвижной жидкой фазой OV-225 на хромосорбе G-HP был определен аминокислотный состав гликопротеидов и белка мембран эритроцитов [54]. [c.51]

    При выборе методов установления аминокислотной последовательности полипептидов предпочтительность метода зависит от свойств пептида или белка (растворимость, аминокислотный состав, длина цепи). Выбор метода анализа обусловлен также доступностью изучаемого материала и чувствительностью определения отщепленных производных. [c.401]

    Аминокислотный состав белков. — Анализ гидролизата белков, содержащего до двадцати различных аминокислот (см. табл. 39), является чрезвычайно сложной задачей. Риттенберг (1940) разработал метод изотопного разбавления, согласно которому радиоактивную кислоту определенной удельной активности, например меченую глутаминовую кислоту, добавляют в известном количестве к анализируемой смеси, после чего выделяют глутаминовую кислоту обычным образом. Так как химические свойства природной и меченой кислоты одинаковы, то выделяемое вещество является смесью добавленной аминокислоты и первоначально присутствовавшей в пробе. Количество кислоты в гидролизате вычисляют по изотопному составу выделенной кислоты. Если добавляется рацемическая меченая кислота, то аминокислоты гидролизата перед выделением рацемизуют или же из выделенного рацемата отделяют чистую -форму. Точность анализа не зависит от метода выделения, выхода кислоты или концентрации ее в гидролизате. [c.655]

    Определение точного аминокислотного состава является первичным обязательным моментом при изучении строения молекулы белка. Без такого определения прежде всего оказалось бы невозможным установление последовательности аминокислотных остатков в пептидной цепи. Помимо этого изучение аминокислотного состава белков позволяет сделать некоторые заключения о реакционной способности белковой молекулы. В табл. 5 представлен аминокислотный состав ряда белков. В графе А указано содержание аминокислот в %, в графе В — в грамм-молях на 10 г белка. Такой подсчет позволяет сопоставлять аминокислотный состав различных белков. В зависимости от содержания в белках аминокислот с различными функциональными группа.ми (кроме а-СООН и г,-NH2), в них могут преобладать кислые или основные, полярные или липотропные группы. [c.482]


    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Для определения питательной ценности был установлен аминокислотный состав белков клубней, наиболее важных с агрономической точки зрения. В таблице 6Г.4 представлены некоторые заимствованные из литературы данные. Они указывают -на большие расхождения между разными видами и даже сортами в пределах одного вида растений. Более того, нередко аминокислотный состав определялся у всей суммарной азотсодержащей фракции клубня и поэтому лишь весьма приблизительно отражает фактический состав белков в клубнях разного географического происхождения. Это подтверждается недавно проведенным для ФАО исследованием [22], в котором отмечается, что клубни и корнеплоды тропических растений до сих пор мало изучены по сравнению с другими культурами, и в этой области информация ограничена. В отношении других клубней растений умеренных зон, исключая картофель, можно сделать следующее обобщение. [c.276]

    Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определение молекулярной массы белков методами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения [c.44]

    Аминокислотный состав белков растений изучался в течение нескольких десятилетий. До последнего времени для этой цели применялись обычные методы аналитической химии. Однако определение аминокислот в гидролизатах белков обычными химическими методами очень сложно и громоздко, и для количественного определения всех аминокислот в одном только образце белкового препарата обычно требуется не менее 100 г белка и несколько месяцев кропотливой работы научного сотрудника. При такой сложности и дороговизне химических методов исследователи очень редко ставили своей задачей установить содержание всех аминокислот в белке и чаще ограничивались определением лишь главных аминокислот. [c.216]

    Известно, что каждый вид растений синтезирует специфические белки, характеризующиеся определенным аминокислотным составом, молекулярным весом и последовательностью аминокислот. Резервуаром, откуда берутся необходимые для синтеза белков аминокислоты и куда возвращаются продукты распада белков, является небелковая фракция, главным образом фракция свободных аминокислот. Некоторые исследователи считали раньше, что аминокислотный состав синтезируемых растениями белков зависит или в какой-то степени определяется содержанием свободных аминокислот в небелковой фракции. Однако детальное изучение содержания свободных аминокислот и аминокислотного состава белков различных растений показало, что какого-либо соответствия между содержанием свободных аминокислот и аминокислотным составом белков в растениях не наблюдается иными словами, состав небелковой фракции растений, очевидно, очень плохо приспособлен к тому, чтобы непосредственно давать необходимые для синтеза белков аминокислоты. [c.288]

    Как известно, каждый белок органов и тканей имеет присущий ему аминокислотный состав. Для синтеза различных тканевых белков необходим поэтому вполне определенный ассортимент незаменимых аминокислот. Если в смеси аминокислот отсутствует хотя бы одна незаменимая аминокислота (стр. 308), белок не может быть синтезирован. [c.325]

    Аминокислотный состав белка устанавливают методом его гидролиза кислотами, щелочами или ферментами. Широко применяется кислотный гидролиз (80% -ная серная или 20% -ная соляная кислота), протекающий наиболее полно. Для определения аминокислотного состава белка применяют различные физико-химические методы, например распределительную хроматографию и ионообменную хроматографию. Распределительная хроматография на бумаге имеет преобладающее значение. Длительное и сложное определение аминокислотного состава гидролизатов сейчас автоматизировано по графику на ленте автомата находят абсолютное содержание аминокислот. [c.278]


    Однако определение аминокислотного состава белков дает лишь одностороннюю их характеристику. Биологические свойства белковых веществ определяются не только входящими в их состав аминокислотными звеньями, а в еще большей степени последовательностью их соединения, т. е. строением белка. [c.390]

    Ионообменная хроматография аминокислот на колонках. Определить аминокислотный состав белка — значит установить массовое или молярное соотношение составляющих его аминокислот, для чего необходимо точно определить количество последних. Само по себе количественное определение аминокислот особых затруднений не представляет, так как для этой цели имеется несколько приемлемых способов. Основное препятствие состоит в разделении их смесей, чего, однако, избежать нельзя, поскольку пока нет методов, позволяющих определять аминокислотный состав белков без гидролиза. Поэтому полипептидные цепи белков сначала расщепляют с помощью кислот или щелочей и определяют аминокислоты в полученных смесях. ИОХ по существу представляет собой метод разделения весьма сходных по химическим и мало различающихся по физико-химическим свойствам аминокислот. В настоящее время ИОХ достигла высокой точности, составляющей 2—4% (относительных). Механизация аналитического процесса привела к созданию так называемых аминокислотных анализаторов, которые, постепенно совершенствуясь, стали полностью автоматизированными быстродействующими агрегатами, работающими по заданной программе. Разделение аминокислот, как правило, ведется на катионитах, из которых чаще всего используется сульфированный полистирол, сшитый дивинилбензолом, добавляемым при синтезе в количестве 8%. [c.189]

    Определение аминокислот в биологических объектах также представляет собой важную область хроматографического анализа. Исследователей могут интересовать свободные аминокислоты, содержащиеся в биологических жидкостях, или аминокислотный состав выделенных белков и белковых тканей. Обычно вполне удовлетворительные ответы на такие вопросы дают ионообменные методы, в связи с чем газохроматографическим методам уделялось очень мало внимания. Однако результаты сравнительных исследований показали [112], что стан- [c.100]

    Современные методы количественного определения аминокислот в гидролизате (особенно метод хроматографии) позволили достаточно полно изучить аминокислотный состав разнообразных белков. В настоящее время описано более 40 аминокислот, найденных в природе. Но не все они являются обязательными и постоянными частями белковой молекулы. Наиболее распространенных аминокислот насчитывается 23. Аминокислотный состав белков далеко не одинаков. [c.338]

    Уникальные свойства белков определяются не только количественными соотношениями между различными аминокислотами, но и определенной последовательностью их расположения в полипептидных цепочках. Аминокислотный состав белка и последовательность расположения аминокислот в полипептидных цепочках называют первичной структурой белка. Первичная структура белка, помимо пептидных связей, содержит также некоторое число дисульфидных мостиков. Исследовать первичную структуру — это значит 1) определить число полипептидных цепей и установить, являются ли они открытыми или замкнутыми, 2.) установить линейную последовательность (порядок чередования) аминокислот в отдельных полипептидных цепях (или цепи) и 3) определить число и местоположение поперечных дисульфидных мостиков, соединяющих эти цепи в молекуле белка. Очевидно, что для разрешения этой задачи необходимо прежде всего иметь очищенные, гомогенные препараты белка, поскольку даже незначительная примесь посторонних белков может существенно исказить получаемые результаты. Кроме того, в распо- [c.77]

    При перегонке происходят большие потери, вследствие чего этот способ не может служить количественным методом определения аминокислот. Следует, однако, указать, что при помощи именно этого метода удалось установить наличие в белках пептидных связей и определить аминокислотный состав белков. Трудности, связанные с перегонкой эфиров аминокислот, принудили искать другие, более простые методы разделения аминокислот. Ценные результаты были получены при помощи фракционного экстрагирования аминокислот из гидролизата бутанолом [32]. [c.28]

    Белковые вещества. Аминокислотный состав. Знакомясь с аминокислотами, мы уже упоминали о том, что высокомолекулярные соединения, построенные из аминокислотных остатков, называются белковыми веществами — белками. Нет ни одного живого организма, растительного или животного, в котором белки не выполняли бы жизненно важных функций. В прошлом веке Ф. Энгельс дал свое известное определение, что жизнь есть способ существования белковых тел. Несмотря на то, что с тех пор наука несравненно глубже познала сущность жизни, это определение сохранило свою силу. Действительно, всюду, где есть жизнь — встречают и белковые вещества. [c.421]

    Все изученные к настоящему времени опсины, которые были выделены из сетчатки многих видов животных, представляют собой небольшие белки с мол. массой 30 ООО—40 000. Для опсинов, выделенных из палочек некоторых видов животных, был определен аминокислотный состав (но не последовательность аминокислот). Углеводная часть комплекса, состоящая из одного (или нескольких) остатка глюкозамина и маннозы, прочно связана с аспарагиновым остатком молекулы белка. С белком ассоциировано также значительное количество липидов, главным образом фосфатидилхолин и фосфатидилэтаноламин. Вопрос о том, связаны ли эти фосфолипиды со зрительным пигментом, составляя часть его молекулы, или они просто являются загрязнениями, попавшими из липидной области рецепторной мембраны, остается открытым. [c.306]

    Основными характеристиками белка служат аминокислотный состав и молекулярный вес. Надежное и достаточно точное определение молекулярного веса макромолекул — довольно сложная задача. Методы определения молекулярного веса, обычно используемые для небольших молеку,л, в частности эбулиоскоиический (повышение точки кипения) и криоскопиче-ский (понижепие точки замерзания), так ке как и метод, оспованный на изменении давления пара растворителя над раствором, малопригодны или даже вовсе не пригодны для макромолекул из-за очень большой величины этих последних, а также из-за их неустойчивости. Нанример, для того чтобы точка замерзания водного раствора белка с молекулярным весом 10 ООО [c.59]

    Мы знаем, что в целом белки экстремальных галофилов являются сильно кислыми. Это было показано для суммарных цитоплазматических белков нескольких экстремально галофильных бактерий, для белков оболочки других экстремальных галофилов и для рибосомных белков Я. utirubrum (табл. 8.5), Был также определен аминокислотный состав белка газовых вакуолей и белка пурпурной мембраны Я. halobium. Ни один из этих белков ие обнаруживает заметной зависимости от присутствия солей. Фактически выделение пурпурной мембраны основано на том, что она устойчива в условиях низкой ионной силы, когда распадается большинство других клеточных структур. Создается впечатление, что все белки галофильных бактерий, за исключением двух указанных выше, имеют значительно более высокую кислотность (измеряемую по разнице между числом кислых и основных аминокислот), чем соответствующие белки негалофиль-ных бактерий. [c.389]

    По данным исследований Шеффнера и соавторов [60], аминокислотный состав пепсинового гидролизата способен выявить различия между белками, которые не проявляются ни при анализе общего содержания незаменимых аминокислот, ни при анализе, проводимом после полного ферментативного гидролиза. Это наблюдение использовано для определения ППО (показатель пепсинового переваривания остатка). [c.576]

    Информационные РНК служат матрицайтгдля синтеза различных белковых молекул. Перевод генетической информации с языка нуклеотидов на язык аминокислот — сложный многостадийный процесс, включающий активацию аминокислот, образование ими комплексов с особым видом РНК (транспортными РНК, или тРНК), взаимодействие этих комплексов с иРНК, связанной с рибосомой, приводящее в конечном итоге к формированию полипептидной цепи, аминокислотный состав которой изначально запрограммирован в определенном участке ДНК. В осуществлении каждой из стадий, ведущих к синтезу молекулы белка, участвует несколько различных ферментов. [c.143]

    Исследование первичной структуры белка начинается с определения его молекулярной массы, аминокислотного состава, N- и С-кониевых аминокислотных остатков. Поскольку пока не существует метода, позволяющего установить полную первичную структуру белка на целой молекуле, полипептидную цепь подвергают специфичному расщеплению химическими реагентами или протеолитическими ферментами. Смесь образовавшихся пептидных фрагментов разделяют и для каждого из них определяют аминокислотный состав и аминокислотную последовательность. [c.33]

    Нужно помнить, что методы определения аминокислот в белковых гидролизатах далеко не идеальны. Во время самого гидролиза при освобождении аминокислот происходят изменения разной глубины. Кроме того, в случае важных для питания белков, особенно растительного происхождения, следует помнить, что мог т иметь место большие колебания в составе в зависимости от вида растения или животного. Подобно тому как при псшощи отбора и культивирования можно изменить содержание витаминов и минеральных составных частей растения, так же можно, вероятно, изменять и аминокислотный состав белк( в в нем. Придет время, когда будут специально выращивать определенные растения из-за содержащихся в них незаменимых аминокислот, точно так же как сейчас их выводят из-за содержащихся в них витаминов. [c.366]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Второй важный вьшод заключается в том, что вторичная структура полипептидов, в частности а-спираль и Р-конформация, возникает самопроизвольно и автоматически вследствие того, что данный полипептид имеет определенный амщю-кислотный состав и определенную аминокислотную последовательность. Характерная вторичная структура белка-это его наиболее устойчивая форма при заданных биологических условиях. а-Спираль и р-структура стабилизируются множеством водородных связей-внутрицепочечных в случае а-спирали и межцепочечных в случае Р-структуры. Хотя водородные связи, взятые в отдельности, относительно слабы, все вместе они придают а-спирали и Р-структуре значительную устойчивость. [c.181]

    Аминокислотный состав белковых фракций семян злаков к настоящему времени довольно хорошо изучен. В таблице 10, составленной по данным Е. Иемма (1958), приведены резз льтаты определений содержания аминокислот в некоторых белках, выделенных из семян. Эти данные показывают, что содержание почти всех аминокислот в отдельных белковых фракциях сильно различается. По своему аминокислотному составу особенно отличаются от других белковых фракций проламины. Эта группа белков характеризуется очень высоким содержанием глутаминовой кислоты и амидного азота. В глиадине пшеницы и гордеине ячменя, например, почти половина от общего содержания азота в белках приходится на долю глутаминовой кислоты и амидов. Амидные группы в белках связаны с глутаминовой кислотой, и, таким образом, в проламинах до половины общего количества азота содержится в виде этих комплексов. Проламины характеризуются также высоким содержанием пролина (до 15% в гордеине ячменя) и очень малым количеством серусодержащих аминокислот и основных аминокислот, особенно лизина. [c.355]

    Наиболее хорошо изучены белки конопли, которые представлены в основном глобулинами, составляющими около 50% белков семени. Глобулин конопли был одним из первых белков, выделенных в кристаллическом состоянии, и получил название эдестина. В настоящее время определен молекулярный вес эдестина, изучен его аминокислотный состав и другие свойства Глобулин клещевины по свойствам близок к эдестину конопли [c.406]

    Отсюда ясно, какое огромное значение в питании человека имеет подбор белков пищи таким образом, чтобы получился оптимальный состав аминокислот для удовлетворения всех потребностей человека. В Советском Союзе Б. И. Збарским и сотрудниками проделана большая работа по определению аминокислотного состава белков органов и тканей человека. Так как в белках одних пищевых продуктов некоторые аминокислоты встречаются в небольшом количестве, то, естественно, надо стремиться добавлять эти аминокислоты путем одновременного потребления таких пищевых продуктов, в белках которых эти аминокислоты находятся в большом количестве. А. Э. Шарпенак провел большую работу по определению аминокислотного состава белков различных пищевых продуктов и составлению на основании этого рационов для человека, в которых белки различных пищевых продуктов дополняют друг друга своими аминокислотами и дают, таким образом, биологически ценное пита[ше. [c.310]

    Количественное определение белков. Для колич. онределения Б. устанавливают общее содержание азота по методу Кьельдаля (см. Ааота определение). Кроме того, используют колориметрич. методы, основанные на различных цветных реакциях Б., напр, биуретовой, а также реакции Лаури, представляющей сочетание биуретовой реакции и реакции Фолина на ароматич. аминокислоты. Концентрации Б. в р-рах можно установить по поглощению в УФ-области спектра, измерением плотности и показателей преломления р-ров. Количественно аминокислотный состав Б. определяют гидролизом Б. и после- [c.193]

    Созинов А. А., Попереля Ф. А. Аминокислотный состав белка пщеницы и некоторые особенности его определения.— Научно-технический бюллетень Всесоюзного селекционно-генетического института, 1969 (1970), вып. 11, с. 36—40. [c.156]

    Липоксидаза была обнаружена у бобовых, некоторых зерновых злаков, а также в семенах масличных растений. Липоксидаза сои была кристаллизована в виде однородного белка. Ее молекулярный вес равен 102 ООО. Был определен также аминокислотный состав этой липоксидазы. Анализ ее не выявил присутствия каких-нибудь необычных аминокислот, а также наличия простетической группы или ионов металлов. В отличие от липоксидазы бобовых липоксидазы, выделенные из маша, ингибируются сульфгидрильными реагентами. [c.189]

    Определяли содержание обш его азота, а также его белковой и небелковой форм, состав и содержание свободных и свя.чан-ных аминокислот. Для этого из навески сухого растительного материала (1 г) проводили экстракцию небелковых форм азота после осаждения белков 5%-ной трихлоруксусной кислотой. Свободные аминокислоты определяли во фракции небелкового азота, а аминокислотный состав белков — в кислотном гидролизате фракции белкового азота [3]. Идентификация и количественное определение аминокислот проведены на автоматическом анализаторе НД-1200Е. Ошибка определения на приборе 2,0%. Расчеты аминокислотного состава — на электронно-вычислительной машине Минск-22 [4]. Все определения проведены в двухкратной повторности. [c.89]

    Пасхина Т. С. Разделение и определение аминокислот методом хроматографии распределения. В прил. к кн. Р. Б л о к и Д. Боллинг. Аминокислотный состав белков и пищевых продуктов. ИЛ, [c.183]

    Теперь уже выяснены первичные структуры и другие детали строения еще более сложных белков, относящихся к ферментам. Так, начало 60-х годов ознаменовалось полным выяснением структуры открытого еще в 1920 г. фермента рибонуклеазы, осуществляющего гидролиз рибонуклеиновых кислот (РНК, см.). Рибонукле-аза—белок, молекулярная масса 13 500, имеет одну полипептид-ную цепь, образованную 124 аминокислотными звеньями. Установлены последовательность этих звеньев и наличие четырех внутри-цепных дисульфидных связей, замыкающих определенные участки цепи в циклы. Выяснен аминокислотный состав и структура некоторых ферментов, содержащих около двух с половиной сотен аминокислотных звеньев (молекулярная масса 27 000—34 000), т. е. являющихся весьма сложными белками. [c.334]


Смотреть страницы где упоминается термин Белки определение аминокислотного состава: [c.175]    [c.152]    [c.79]    [c.204]    [c.72]    [c.390]    [c.70]   
Биологическая химия Издание 3 (1960) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках

Белки, аминокислотный соста

ЗШи, аминокислотный состав



© 2025 chem21.info Реклама на сайте