Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам радиоактивный

    В рамках технической и геохимической классификаций все металлы подразделяются на черные (железо), тяжелые цветные (медь, свинец, цинк, никель и олово), к которым примыкают так называемые малые металлы (кобальт, сурьма, висмут, ртуть, кадмий), легкие металлы (алюминий, магний, кальций и т. п.), драгоценные и платиновые (золото, серебро, палладий и др.), легирующие или ферросплавные (марганец, хром, вольфрам, молибден, ванадий и т. д.), редкие и радиоактивные металлы (уран, торий, семейства лантаноидов и актиноидов). [c.221]


    Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, еще 24 изотопа вольфрама получены в различных ядерных реакциях искусственным путем. Впрочем, некоторые из них образуются вполне естественным путем — при самопроизвольном или вынужденном делении ядер урана. Все эти изотопы, естественно, радиоактивны и, как правило, не долгоживущи. [c.183]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Природный хром состоит из четырех стабильных изотопов, молибден — из семи, вольфрам — из пяти. Большое число радиоактивных изотопов получено искусственно. [c.372]

    На основе описанных методик с помощью радиоактивных изотопов Мо , Ре , N1 , проведено исследование диффузии и электропереноса обоих компонентов в сплавах системы молибден — вольфрам (всего И сплавов), в сплавах железа, содержащих 2 и 4 ат.% никеля в широких интервалах температур. [c.205]

    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]


    Вольфрам — медь — никель ( тяжелый сплав ). При отсутствии взаимной растворимости металлов в системе вольфрам—медь оба металла растворимы в никеле, вследствие чего при определенных соотношениях компонентов можно получить, используя методы металлокерамики, тройные сплавы с высоким содержанием вольфрама (напр., 90% W, 6% N1, 4% Си). Сплавы обладают большой плотностью (>16), повышенной коррозионной стойкостью и высоким коэфф. поглощения радиоактивных излучений. Применяются в атомной и авиационной технике, приборостроении и др. об.ластях, [c.329]

    Вольфрам-185 и ниобий-95 были успешно применены в качестве радиоактивных индикаторов для изучения разделения вольфрама и ниобия смесью сульфата магния, хлорида аммония и [c.93]

    Орто-пара-состав, полученный при низких температурах, устойчив и при нормальных температурах сохраняется в течение длительного времени. Восстановить равновесие можно нагреванием газа до 700—800° С. Восстановление равновесия ускоряется металлическим катализатором (платина, никель, вольфрам). У трития равновесие восстанавливается под воздействием радиоактивного распада. Теплота перехода из одного состояния в другое весьма значительна (см. П. I).  [c.24]

    Действительно, опыты показывают, как мы увидим далее, что значения критических потенциалов осаждения часто зависят от природы и состояния поверхности электрода. Так, например, в большинстве изученных случаев критические потенциалы осаждения очень малых количеств радиоактивных изотопов па платине сильно сдвинуты в сторону более положительных значений потенциала от значения, вытекающего из уравнения Нернста ( недонапряжение ). В случае же выделения на таких металлах, как тантал и вольфрам, напротив, обычно наблюдается сильный сдвиг потенциала осаждения в отрицательную сторону ( пере- [c.507]

    Интересны и другие области применения радиоактивных изотопов в металловедении. Так, радиоактивный изотоп вольфрама вводили в трущиеся части машин, в режущий инструмент. После определенного времени эксплуатации таких меченых деталей измеряли интенсивность излучения на контактировавших с ними участках металла. Оказалось, что вольфрам в результате трения, резки и сопровождающего их повышения температуры переходит на обрабатываемый металл, т. е. таким образом фиксируется процесс износа, количественно оценивается скорость износа трущихся частей и инструмента. При этом удавалось определять содержание вольфрама в количестве порядка 10 г на 1 мм пути скольжения. [c.290]

    Вольфрам — элемент шестой группы периодической системы элементов Д. И. Менделеева, его порядковый номер 74, атомная масса по углеродной шкале 183,85. Природный вольфрам состоит из смеси стабильных изотопов с массами 180 (0,16%), 182(26,35%), 183 (14,32%), 184 (30,68%), 186 (28,19%) [450]. Для вольфрама известны радиоактивные изотопы с массовыми числами 174—188 (табл. 1). [c.7]

    Соли меди(П) используют в качестве коллектора при осаждении >3-10 % В1, С(1, 8п, ЗЬ и РЬ в форме сульфидов вольфрам маскируют винной кислотой. Полноту отделения примесей контролируют с помощью радиоактивных изотопов [364]. [c.53]

    Кислым гидролизом в присутствии желатина можно отделить вольфрам от Ре(1П) [421]. Для отделения от молибдена рекомендована [240] НС1 (1 3), растворяющая молибденовую кислоту при отделении 1—2 мг Од от 10—100 мг МоОд в осадке вольфрамовой кислоты обнаружено 0,03—0,08 мг МоОд [155]. С использованием радиоактивных изотопов показано [487], что в присутствии 50-кратных количеств вольфрама до 75% молибдена соосаждается с вольфрамовой кислотой. [c.54]

    П )иродный хром состоит из четырех стабильных изотопов, мо либден — из семи, вольфрам — из пяти. Большое число радиоактивных изотопов получено искусственно. Из минералов наибольшее значение имеют Ре(Сг02)о — хромистый железняк-, MoSj — молибденит, aW04 — шеелит, (Fe, Mn)WO,, — вольфрамит. [c.549]

    Элементы хром Сг, молибден Мо и вольфрам составляют VIБ группу Периодической системы Д. И. Менделеева. Искусственно получен и их аналог в 7-м периоде — радиоактивный элемент 106 в виде изотопа с массовым числом 263 и периодом полураспада 0,9 с (собственного названия 9, 1еменп 106 пока не имеет). [c.237]

    Элементы хром (Сг), молибден (Мо) и вольфрам (W) составляют побочную подгруппу шестой группы. Элемент № 106 (названия и символа пока не имеет), KOTopHit также находится в побочной подгруппе VI группы,— радиоактивный элемент, искусственно полученный впервые в 1974 г. в лаборатории Объединенного института ядерных исследований (г. Дубна, Россия) изотоп с массовым числом 263 имеет период полураспада, равный [c.315]

    Кроме радиоактивных продуктов деления урана или плутония в глобальных радиоактивных выпадениях могут присутствовать радиоактивные изотопы, возникающие в результате взаимодействия нейтронов, образующихся при ядерном взрыве, с атомами элементов заряда, конструкций и элементов, содержащихся в воздухе, почве, породах. Вследствие взаимодействия нейтронов с элементами заряда образуется нептуний-239, а при термоядерном взрыве — тритий и уран-237. При взаимодействии нейтронов с консфуктивными элементами устройства образуются кобальт-60, кобальт-57, вольфрам-185, вольфрам-181, вольфрам-187, рений-188 и родий-102. При взаимодействии с компонентами воздуха образуются аргон-41, углерод-14 и тритий. При взаимодействии с почвой активируются алюминий, кремний, натрий, марганец, железо, кобальт и другие элементы (табл. 8). [c.33]


    В РФА используются три основных вида возбуждения ХРИ фотонное, ионное и бета-излучение. Подробно их особенности рассмотрены в монографиях [259, 260, 275, 276]. Наиболее рас пространено фотонное возбуждение (гамма-кванты и рентгенов ское излучение). Использование фотонного излучения с энер гией, несколько превышающей порог возбуждения анализируе мого элемента, позволяет добиться высокой эффективности взаимодействия, а следовательно, большого выхода ХРИ. В качестве источников фотонов применяются радионуклиды. В свою очередь, радиоактивные источники можно разделить на две основные группы. К первой относятся излучатели с линейчатым спектром, для которых основным видом распада является К-захват, изомерный переход или а-распад. Они позволяют получать монохроматическое рентгеновское или гамма-излучение с высоким выходом 0,1—1 квант/распад. Наилучшими в отношении спектральной чистоты и удельной активности являются следующие изотопы железо-55, кадмий-109, кобальт-57, молиб> ден-93, цезий-139 и вольфрам-181. Возбуждение анализируемо- [c.67]

    Элементы хром Сг, молибден Мо и вольфрам , а также искусственно полученный радиоактивный элемент с порядковым номером 106 (сиборгий Sg) составляют УШ-группу Периодической системы Д.И. Менделеева. Общая электронная формула валентного уровня для атомов хрома и молибдена (п-1)степеней окисления. Для хрома характерны степени окисления +П, +П1 и +У1, устойчивая степень окисления -1-П1. Для молибдена и вольфрама характерная и устойчивая степень окисления -1-У1. [c.230]

    Широкое распространение по.лучили вольфра.мовые ДКМ с оксидами, в частности, с оксидами тория и алюмо-кремнещелочными присадками. В связи с радиоактивностью тория ведутся работы по его замене на оксиды гафния, циркония и редкоземельных элементов. Вольфрамовые ДКМ получают методами механического и химического смешивания. При введении оксидов в твердые растворы вольфрама с рением повышаются прочностные характеристики ДКМ при комнатной и умеренных температурах и растет пластичность. При тствие в вольфраме оксидов (ТЬОг, MgO, А12О3) положительно влияет на его жаропрочность. [c.122]

    В ТГИ наряду с упомянутыми выше элементами содержится боль шое число редких, рассеянных и радиоактивных элeмeнfbв. Изучение распределения этих элементов в углях позволило выявить так назы ваемый ряд уменьшающегося сродства к органическому веществу Се > > Са > Ве > МЬ > Мо > 8с >, > Ьа > 2п > РЬ (германий и вольфрам входят в состав органической части, а цинк и свинец сосре- доточены в минеральной массе). Наименьшим содержанием германия характеризуются угли более высоких, а повышенным — у ли алых стадий литификации. Основное количество германия входит в состав органических веществ соединений угля с образованием соединений внутрикомплексного типа  [c.58]

    Предлагаемая читателю книга д-ра хим. наук проф. Г. А. Ягодина, канд. хим. наук О. А. Синегрибовой и А. М. Чекмарева посвящена химической технологии именно тех редких металлов, которые используют в атомной технике, и написана на основе специального курса лекций, читаемого авторами на инженерном физико-химическом факультете Московского ордена Ленина и ордена Трудового Красного Знамени химико-технологического института им. Д. И. Менделеева. Таким образом, круг рассматриваемых редких металлов ограничен такими металлами, как литий, бериллий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, молибден, вольфрам и титан. Ввиду того, что химия и технология редких металлов, относящихся к естественным или искусственным радиоактивным элементам, читается в отдельных специальных курсах, эти разделы в данном учебном пособии не излагаются. [c.3]

    М. с. 1000—1600° с. При повышении т-ры значительная прочность сохраняется (рис.)- М- с. выплавляют, как правило, в вакуумных дуговых пли электроннолучевых почах. Полуфабрикаты изготовляют в виде прутков, профилей, труб, листов, фольги и проволоки. Слитки литого металла подвергают горячему прессованию при т-ре 1500° С, промежуточному отжигу в интервале т-р 1200—1500° С (в зависимости от состава сплава) и последующему деформированию прокаткой или волочением. Из М. с. изготовляют поковки массой до 1,1 т. При оптимальном режиме прокатки т-ра хладноломкости при изгибе близка к т-ре жидкого азота. М. с. как жаропрочные конструкционные материалы применяют для изготовления головных частей и сопел ракет, вкладышей сопел, упорных колец силовых установок, рулей передних кромок крыльевых сверхзвуковых самолетов, радиационных щитков п деталей крепления, эксплуатируемых ирп высокой т-ре, деталей и узлов турбин. Применение жаропрочных М. с. в ракетных двигателях позволяет повысить рабочую т-ру на 200—300° С, увеличить их мощность. Каропрочные М. с. используют и и атомно энергетике. Лит. Тугоплавкие материа.лы в машиностроении. Справочник. М., 1967 Мальцев М. В. Металлография тугоплавких редких и радиоактивных металлов и сплавов. М., 1971 Сплавы молибдена. М., 1975 Молибден. Пер. с англ. М., 1962 Агте К., В а ц е к И. Вольфрам и молибден. Пер. с чеш. М.—Л., 1964 Т и т ц Т., Уилсон Дж. Тугоплавкие металлы и сплавы. Пер. с англ. М., 1969. В. Н. Минапов. МОЛИБДЕНИРОВАНИЕ - диффузионное насыщение поверхности металлических изделий молибденом или нанесение на них покрытий из чистого молибдена. Диффузионное М. обычно осуществляют газо- и жидкофазным способами. При газофазном способе молибден переносится газообразными галогенидами молибдена (хлоридами, фторидами и т. п.), при жидкофазном — анионами молибдена, к-рые осаждаются на поверхности катода—изделия. При газофазном способе (способе порошков) используют чистые молибдено- [c.8]

    Применение радиоактивных индикаторов позволяет вести разработку новых методов анализа. Например, разделение ниобия и вольфрама при гидролизе первого раствором, содержащим сульфат магния, хлористый аммоний и аммиак, показало, что вольфрам не захватывается осадком ниобиевой кислоты, а часть ниобия остается в растворе неосажденной. Однако доля неосажден-ного ниобия может быть учтена по доле неосажденного добавленного радиоактивного изотопа ниобия — Nb. [c.522]

    Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 (самый раснространенный, его доля 30,64<Уо) и 186. Из довольно многочисленных искусственных радиоактивных изотопов элемента М 74 практически важны только три вольфрам-181 с периодом полураспада 145 дней, вольфрам-185 (74,5 дня) и вольфрам-187 (23,85 часа). Все три эти изотопа образуются в ядерных реакторах при обстреле нейтронами природной смеси изотопов вольфрама, [c.152]

    Нами было проведено изучение процесса экстрагирования микроколичеств вольфрама с применением в качестве радиоактивного индикатора Yi85 Эфирный раствор, содержащий радиоактивный вольфрам, наносили на кружок фильтровальной бумаги диаметром 3 см и активность препарата измеряли торцовым счетчиком. [c.134]

    Нами разработан метод получения препаратов радиоактивного изотопа мышьяка-76 в элементарной форме разложением мышьяковистого водорода в электрическом поле высокого градиента. Прибор (рис. 6), в котором производили операцию получения препарата, состоял из колбы Л, в которую помещали облученное мышьякорганическое соединение, и колбы Б, куда перегоняли из первой колбы радиоактивный треххлористый мышьяк, восстанавливавшийся здесь металлическим цинком до мышьяковистого водорода и поступавший в трубку для разложения В. Последняя была окружена снаружи металлическим кольцом, соединенным с источником переменного электрического поля высокого градиента. Внутри трубки проходила соединенная с землей металлическая проволока и вставлялся металлический цилиндр (платина, вольфрам и т. п.) или цилиндр из арганичеокой пленки, на котором и происходило осаждение элементарного радиоактивного мышьяка. Воронки с кранами служили для приливания соляной кислоты. Для поглощения неразложив-шегося мышьяковистого водорода служил приемник Г. В ряде опытов наружное металлическое кольцо отсутствовало, и высокое переменное напряжение прикладывалось непосредственно к стеклянной трубке. [c.167]

    ВОЛЬФРАМ (Wolframium) W — химич. элемент VI группы периодич. системы Менделеева, п. н. 74, ат. в. 183,92. Природный В. состоит из смеси пяти стабильных изотопов с массовыми числалш 180 (0,135%), 182 (26,41%), 183(14,4%), 184 (30,64%) и 186 (28,41%). Известно также неск. искусственных радиоактивных изотопов В. в качестве радиоактивных индикаторов используются (3 у = 145 дн.), = [c.326]

    Он может быть получен дейтронной или нейтронной бомбардировкой вольфрама, причем в первой реакции в качестве примеси получается радиоактивный рений во второй реакции радиоактивный вольфрам образуется с примесью короткоживущих изотопов вольфрама. [c.276]

    Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт б) легкие бериллий, литий, рубидий и др. в) рассеянные германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются скорее металлоидами, чем металлами г) редкоземельные лантан, иттрий, гафний, церий, скандий и др. д) радиоактивные торий, радий, актиний, протактиний, полоний, уран и заурановые элементы. Из группы редких металлов часто выделяют в качестве отдельной группы так называемые малые мегаллы сурьму, ртуть, висмут. [c.431]

    Присутствие хлорида, фторида и сульфата аммония тормозит образование осадка, такое же действие оказывают НС1, HF и H2SO4. Мышьяк, селен, кремний, теллур, вольфрам, ванадий, титан и цирконий мешают определению, их мешающее влияние можно устранить, если осаждение проводить в более концентрированных растворах HNO3. Изучали [64] влияние мышьяка и ионов переходных металлов на осаждение, результаты исследований показали, что фосфат можно количественно осадить при 50—70 °С 3,5-кратным по сравнению со стехиометрическим избытком молибдата аммония даже в присутствии эквивалентных количеств мышьяка. С помощью радиоактивных изотопов было показано, что количество осаждающегося As зависит от избытка молибдата аммония и температуры, при которой проводят осаждение. В этой же работе было найдено, что нитрат железа ингибирует осаждение фосфата (так же, как и арсената), нитраты хрома (III), никеля (II) и марганца (II) оказывают меньше влияния на скорость образования осадка. [c.445]


Смотреть страницы где упоминается термин Вольфрам радиоактивный: [c.281]    [c.590]    [c.148]    [c.308]    [c.165]    [c.190]    [c.206]    [c.579]    [c.72]    [c.79]    [c.91]    [c.195]   
Химия изотопов Издание 2 (1957) -- [ c.333 , c.449 ]




ПОИСК







© 2025 chem21.info Реклама на сайте