Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор влияние мышьяка

    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]


    Научные работы посвящены физикохимии флотационных процессов и исследованию комплексооб-)азования парамагнитных ионов. Исследовал продукты взаимодействия реагентов с минералами с применением методов радиоспектроскопии. Установил влияние электронно-дырочных центров минералов на изменение их флотационных свойств. Разработал синтез спин-меченых флотореагентов и нашел пути их широкого использования для изучения механизма взаимодействия реагентов с поверхностью минералов. Разработал технологию комплексной переработки руд ряда месторождений. Изучал комнлексообразование парамагнитных ионов с лигандами, содержащими атомы серы, кислорода, азота, селена, фосфора и мышьяка. Установил строение и параметры химической связи ряда комплексов. Разработал способ [c.472]

    Одним из методов устранения мешающего влияния мышьяка и фосфора является разрушение образовавшегося молибденового комплекса лимонной [23], щавелевой [4] или винной кислотой, аммиаком [3] или тартратом натрия. При этом на один моль молибденового ангидрида требуется один моль щавелевой кислоты [29]. Щавелевая кислота устраняет мешающее влияние фосфата, а лимонная — влияние кальция. Алюминий, цинк и железо удерживают в растворе в виде комплексов добавлением тартрата аммония. Ионы фосфата не мешают при pH 4,2—6,8 [19]. [c.37]

    До настоящего времени у нас не учитывается содержание мышьяка в углях и коксе. Между тем влияние мышьяка не ме-иее, если не более, вредно, нежели фосфора, хотя содержание его в углях несравненно меньше, чем фосфора. Но уже по ана- [c.222]

    О поведении серы в углях при коксовании, а также о влиянии фосфора и мышьяка на качество кокса уже говорилось в главе 8. [c.432]

    Изучено влияние мышьяка на определение фосфора [116]. При этом показано, что применение предварительного восстановления мышьяка(V) до мышьяка(П1) дает удовлетворительные результаты. [c.108]

    Мышьяк и его соединения ядовиты. Подобно фосфору, мышьяк встречается в нескольких модификациях. Обычная форма —металлический, или серый, мышьяк. Он проводит электрический ток. Мышьяк возгоняется, не плавясь, при 633 °С. Плотность пара до 800 °С соответствует формуле AS4, выше 1700° — формуле Asj. Пары мышьяка бесцветны. При резком охлаждении паров получается желтый мышьяк. По химическим свойствам он подобен белому фос( юру, но менее устойчив. При слабом нагревании, а также под влиянием света желтый мышьяк переходит в серый (металлический) мышьяк. [c.306]


    В этом методе отсутствует мешаюш,ее влияние других элементов, в том числе сурьмы и фосфора. Метод применен для определения мышьяка в меди и ее сплавах. [c.40]

    Выбор контактного вещества и способ его приготовления занимали многих исследователей. Влияние на активность катализатора различных веществ тщательно изучалось. Для получения чистого железа Габер применял оксалат. Примеси в металлах и их окислах должны быть определены, и составные части точно из вестны, так как катализаторы чувствительны к некоторым веществам, которыми они быстро отравляются. Так, соединения серы, мышьяка и фосфора производит отрицательное влияние ма активность катализатора, поэтому они не должны присутствовать в контактной массе. Весьма малые количества серы (1 1000000) отравляют катализатор, то же влияние оказывает мышьяк. Водород и азот должны быть свободны от контактных ядов. При условии применения железа в виде катализатора- и железа с примесью активаторов, как окись калия и окись алюминия, синтез с достаточным выходом аммиака осуществляется ум<е при давлениях, меньших ста атмосфер и температурах ниже 500 С (450 —475). [c.112]

    В качестве стабилизаторов используют самые различные химические соединения. Это и окислители (кислород, перекись водорода), и ионы металлов-ингибиторов (ванадия, висмута, молибдена, ниобия, рения, мышьяка, сурьмы), и соли серы, селена, таллия, ртути, и органические соединения серы, азота, фосфора, и поверхностно-активные вещества. Однако хороших стабилизаторов еще очень мало, так как многие из применяемых в настоящее время, будучи каталитическими ядами, сильно замедляют скорость металлизации. Исходя из этих соображений полезность действия стабилизаторов можно выразить следующим соотношением Лд=ит —1, где и и т — соответственно средняя скорость осаждения металла и продолжительность стабильной работы раствора (индукционный период разложения) в присутствии стабилизатора, а и и тР — то же, но без стабилизатора. При Л =0 добавка предполагаемого стабилизатора не оказывает ни положительного, ИИ отрицательного влияния, а при —1<Л <0 — ухудшает эффективность использования раствора химической металлизации. При Л >0 стабилизатор явно полезен, и чем большее значение Л , тем больше полезность стабилизатора, тем ближе он к идеальному. [c.30]

    Опубликованы данные о влиянии различных факторов на экстракцию гетерополикислот, а также варианты методик для экстракционного разделения и фотометрического определения фосфора, мышьяка, кремния, германия и ванадия в форме соответству-юш,их гетерополикислот в различных материалах. [c.239]

    Главная проблема прямого озоления — потери некоторых примесей вследствие испарения, механического уноса или адсорбции. При определении средних и высоких концентраций нелетучих примесей эти отрицательные факторы не оказывают решающего влияния. Но для определения таких легколетучих примесей, как, например, мышьяк, ртуть, сера, фосфор, кадмий, свинец, или для определения элементов, содержащихся на уровне нг/г, от прямого озоления следует вообще отказаться. При прямом озолении много теряется ванадия. Это объясняется высокой летучестью оксида ванадия (V). [c.79]

    Другим важным фактором является термический цикл, которому подвергается материал при изготовлении. У 1 % Сг, Мо стали наблюдается резкое увеличение когда осуществляется отпуск при температурах 350—450° С, которое сопровождается относительно небольшим уменьшением предела текучести (рис. 9.10). Таким образом, следует использовать сталь в таком состоянии, при котором достигается высокое значение Кю-В заключение рассмотрим влияние чистоты стали и сплавов на вязкость разрушения. Исследования [6] титановых сплавов показали,., что вязкость значительно увеличивается у материала более высокой чистоты, хотя и наблюдается некоторое уменьшение прочности. Исследования [5] 2% N1, Сг и Мо стали показали, что когда сталь подвергалась термообработке на предел текучести, равный примерно 125 кгс/мм , К, с для чистой стали составлял более 320 кгс/мм / , в то время как для стали, содержащей 0,014% 5 и 0,010% Аз в качестве примесей, К1с уменьшался до 135 кгс/мм /2. Результат показывает, что "наблюдается по крайней мере шестикратное уменьшение допустимого размера дефекта, вызываемое введением примесей серы и мышьяка. Таким образом, нельзя пренебречь влиянием чистоты стали на вязкость разрушения. Особенно это касается таких элементов, как сера, фосфор, мышьяк, олово и, возможно, сурьма, в то время как в большинстве спецификаций на сталь задается только максимальное содержание серы и фосфора и оно может быть достаточно высоким по сравнению со значениями, которые требуются для получения оптимальной вязкости разрушения. Вероятно, для создания сосудов давления, рассчитанных с учетом вязкости разрушения, потребуется пересмотреть спецификации на высокопрочные материалы. [c.392]


    Мышьяк, фосфор и германий образуют с ионами молибдата аналогичные комплексные соединения [2], поэтому названные элементы мешают определению кремневой кислоты и их следует либо отделять, либо связывать добавлением соответствующих реагентов. Мышьяк и германий можно удалить выпариванием с соляной кислотой. Мешающее влияние фосфата устраняют различными способами, в том числе осаждением магнезиальной смесью, хлоридом кальция, хлоридом кальция и карбонатом кальция, хлоридом кальция и аммиаком или хлоридом кальция со смесью тетрабората натрия и гидроокиси натрия [24]. Мешающее влияние фосфата, без его отделения, устраняют регулированием pH [13]. [c.37]

    Предложен метод определения германия, фосфора и мышьяка [625], основанный на спектрофотометрировании желтых" пятен гетерополикислот определяемых элементов после их разделения хроматографированием на бумаге и проявлении азотнокислым раствором парамолибдата аммония. В качестве подвижного растворителя применяют бутанол, насьпценный 10%-ной HNOg. Разделение проводят методом нисходяш ей хроматографии. Метод применим для определения 2 мкг фосфора в присутствии 20-кратного количества Si, As, V и 5-кратного количества Ge. Если количества Fe, Мо и W соответственно составляют менее чем 0,15, 1,25 и 2,5 ч. от присутствующего количества фосфора, то эти элементы не мешают анализу. Хром мешает определению, если содержание его составляет более чем 0,15 ч.от присутствзтощего содержания фосфора. Мешающее влияние Fe и Сг, по мнению авторов, обусловлено образованием фосфатных комплексов этих элементов. [c.102]

    Изучали влияние ртути(И) на определение фосфора [126, 127]. Ртуть вносит в определение значительную положительную ошибку. Было найдено, что ее влияние можно устранить обработкой раствора хлоридом или смесью метабисульфита и тиосульфата, которые комплексуют ртуть. Смешанный реагент (метабисульфит — тиосульфат) устраняет также мешаюшее влияние мышьяка (V). [c.460]

    Помехи от ионов РО4 - и As04 , образующих в этих условиях комплексы с молибдат-ионом, устраняются прибавлением различных маскирующих веществ лимонной [8, 9], винной [10] и щавелевой кислот [11]. Нами исследована возможность применения этих кислот для устранения погрещно-стей, вызываемых присутствием примесей фосфора и мышьяка. Кроме того, выяснено влияние ряда других примесей на точность определения. [c.191]

    Необходимо в связи с вышеизложенными рассуждениями Дюма от.метить, что с 1832 по 1836 г. происходит некоторая эволюция его взглядов. Если он в 1832 г. смешивал физические атомы газов с химическими и сам настаивал на изменении атомного веса фосфора и мышьяка, то теперь, очевидно под влиянием критики Берцелиуса [56] и идей Годэна [58], он изменил свой взгляд и уже отличал физические атомы от химических атомов Берцелиуса и в основном склонялся ко взгляду Годэна. Он замечал Химические атомы, по-види- мому, образуют группы так, газообразные частицы фосфора или мышьяка содержат в два раза более атомов, чем частицы азота газообразные частицы серы заключают в три раза более хи.мических атомов, чем частицы кислорода. Вы должны допустить по отношению к этим телам, что химическое действие производит более глубокое деление, чем теплота [53, стр. 268]. [c.101]

    Определению мешает мышьяк, дающий с молибдатом аммония скраишн-ный комплекс. Влияние мышьяка устраняют ксусной кислотой, которая образует с ним комплекс. Фосфор ие мешает, если присутствует в количестве меньшем, чем кремний. [c.660]

Рис. XII.15. Влияние доноров (фосфора и мышьяка) и акцепторов (бора) на концентрации различных медных центров в насыщенном медью кремнии Т = 600°. Экспериментальные данные взяты из работы Холла и Ракетте [21]. Рис. XII.15. <a href="/info/1150398">Влияние доноров</a> (фосфора и мышьяка) и акцепторов (бора) на <a href="/info/121789">концентрации различных</a> медных центров в насыщенном <a href="/info/433447">медью кремнии</a> Т = 600°. <a href="/info/304050">Экспериментальные данные</a> взяты из работы Холла и Ракетте [21].
    Наличие мышьякосодержащих соединений в угле и коксе до по следнего времени не учитывалось. Между тем, влияние мышьяка так ж вредно, как и фосфора. Обычно мышьяк в виде сульфидов со провождает пириты, распределенные в угле. Однако строгой за висимости между содержанием, пиритов и количеством мышьяка нет Содержание мышьяка (в пересчете на триоксид) в углях достигае [c.60]

    Хотя химия органических соединений фосфора и мышьяка широко изучается многими авторами с использованием разнообразных физических и химических методов /1-15/,проблема механизма электронных взаимодействий в них еще далека от своего решения.С целью получения дополнительной информации по этому вопросу в настоящей работе исследовано влияние факторов электронного строения на скорость основного дейтерообмена метильной группы и некоторые спектроскопические характеристики третичных метил-фенилфосфинов и арсинов,соответствующих им окисей,сульфидов и "ониевых" соединений. [c.443]

    Индий — мягкий (мягче свинца) серебристо-белый металл, пластичный и плавящийся при сравнительно невысокой (156,4°С) температуре. Подобно галлию, индий образует с большим числом металлов легкоплавкие сплавы. Сплав индия с галлием находится при комнатной температуре (16°С) в жидком состоянии. Соединения его с мышьяком, фосфором, сурьмой являются полупроводниками. По химическим свойствам индий также сходен с галлием. Индий в форме антимонида 1п8Ь применяют для изготовления детекторов инфракрасного (теплового) излучения. Это соединение сильно изменяет свою электрическую проводимость под влиянием длинноволнового излучения. Введение микродоз индия в германий приводит к появлению у германия дырочной проводимости (проводимость р-типа). Поэтому контакт германий чистый — германий с примесью индия представляет собой так называемый п—р-пере-ход на этой же основе легко получить и р—м—р-переходы, применяемые в транзисторах. [c.160]

    Пятая группа периодической системы включает два типических элемента — азот и фосфор — и подгруппы мышьяка и ванадия. Между первым и вторым типическпми элементами наблюдается значительное различие в свойствах. В состоянии простых веществ азот — газ, а фосфор — твердое тело. Такое же положение имеет место и в VI группе системы, но там первый типический элемент (кислород), как и следовало ожидать, намного химически активнее серы. В V же группе, наоборот, второй типический элемент (фосфор, особенно белый) более активен как простое вещество, чем азот. Дело в том, что образование соединений первого порядка — это процесс химического взаимодействия между атомами, а не молекулами. Поэтому на химическую активность элемента (атома) решающее влияние оказывает энергия диссоциации гомоатомных соединений на атомы. А энтальпия диссоциации молекул азота N2 на атомы в 1,5 раза больше этой величины для молекул фосфора Р4 (с учетом энергии сублимации менее активного красного фосфора). Это обстоятельство является основной причиной большей химической активности фосфора по сравнению с азотом. В то же время атомы азота, естественно, химически гораздо активнее атомов фосфора. Так, ОЭО азота 3,0, а фосфора 2,]. Таким образом, когда речь идет о большей химической активности фосфора по сравнению с азотом, нужно иметь в виду активность простых веществ, а не элементов. Несмотря на имеющиеся различия между азотом и фосфором оба типических элемента и их производные — важнейшие составные части растительных и животных организмов. [c.245]

    В результате комплексного исследования влияния легирования на стойкость сталей к растрескиванию в сероводородсодержащих электролитах предложен ряд низколегированных сталей, обладающих в д нных средах повышенной стойкостью [28]. Кроме того, предложены стали, легированные редкоземельными элементами, а также высоколегированные сплавы Ni—А1 — сплав после горячей прокатки и старения, Ni- u— Fe - сплавы типа инконель после отж-ига или холодной обработки и ряд других. Есть основание считать, что редкоземельные элементы рафинируют сталь от металлоидов (кислород, водород), вязывают мышьяк, серу и фосфор в тугоплавкие соединения и вместе с тем снижают перенапряжение вьщеления водорода на металле, препятствуя водородной хрупкости [8]. [c.120]

    Из других катионов определению 100 мкг алюминия не мешают 0,5 мг Ni, Со, Мо, Мп, W [9261. По другим данным [831] определению 4—150 мкг алюминия не мешают 3 мг Мп, 0,5 мг Сг и Sn, 0,3 мг Си и 0,15 мг фосфора. 5 мкг алюминия можно определять в присутствии 0,25 г цинка без предварительного отделения [831]. Не мешают заметные количества d, Pb и Sn. Влияние меди можно устранить введением тиосульфата натрия [250]. Таким образом, оказывается возможным опреде тять алюминий в медно-цинковых сплавах без отделения [250. Присутствие мышьяка мешает мало 111951. [c.103]

    Кроме сероводорода определению мышьяка этим методом мешают только РНз, SbHg и GeH4, которые взаимодействуют с бромидом и хлоридом ртути(П), подобно арсину. Фосфор, если он присутствует в виде орто-, ноли- или метафосфатов, в условиях определения мышьяка не восстанавливается и определению не мешает. Мешают только фосфиты и гипофосфиты. Их мешающее влияние, равно как и мешающее влияние низших валентных форм серы, легко мозкет быть устранено предварительной обработкой анализируемого раствора сильным окислителем (нанример, КМПО4) с последующим удалением его избытка. Определение выполняется следующим образом [253]. [c.63]

    Для определения мышьяка в белом фосфоре использована квадратно-волновая полярография [566, 567]. Разработанная методика позволяет определять мышьяк в присутствии до 3-10 молъ/л селена и до 4-10 молъ/л свинца. Полученные данные согласуются с результатами работы [438], в которой изучалось влияние селе-на(1У) на осциллополярографическое поведение мышьяка. В этой работе показано, что на фоне 0,1 М Li l определению мышьяка не мешают шестикратные количества селена(1У). [c.87]

    Нк начальном этапе исследований экспериментальные данные о характере влияния тех или иных добавок были весьма противоречивыми. Например, с целью повышения коррозионной стойкости латуней рекомендовалось легировать их марганцем, алюминием, железом [184]. В то же время в [2] указывается на то, что мышьяк, олово, никель, сви ец затрудняют, а железо и марганец усиливают обесцинкование. В ряде работ было показано, что легирование латуней оловом приводит к повышению коррозионной устойчивости в частности, в [185, 186] сделан вывод, что при этом уменьшается склонность к обесцинкованию, а общая скорость коррозии практически не меняется. По другим же данным оло-вянистая латунь корродирует сильнее, чем нелегированная [187]. Отсутствует единое мнение и о характере влияния алюминия на коррозионную устойчивость латуней. Одни авторы отмечают, что алюминий снижает обесцинкование как а-, так и i -латуней, препятствуя образованию фазы Си° на поверхности сплава [188]. Другие указывают на необходимость дополнительного легирования алюминиевых латуней мышьяком или фосфором [189]. Третьи делают вывод о воз- [c.171]

    Основная область научных исследований — химия переходных металлов. Разработал стереохимию комплексов с кратной связью металл — лиганд. Открыл стерео-специфические реакции цис-эффект, реакцию протонизации с дислокацией лиганда, хелатную изомерию. Один из создателей модели транс-влтпия в гексако-ординационных комплексах переходных металлов и ( с-влияния лигандов в комплексах непереходных элементов. На основе реакций перераспределения лигандов открыл равновесия изомеров комплексов фосфора, мышьяка, сурьмы, ниобия, тантала и иода. Развил стереохимию второй координационной сферы. Обобщил данные о кислотно-основных взаимодействиях фторидов в неводных средах. Получил ряд новых классов тугоплавких веществ, в том числе высокотемпературные аналоги фос-фонитрилхлоридов. [c.87]

    Научные исследования охватывают ряд направлений общей химии XIX в. Под руководством А. В. Г. Кольбе получил (1847) пропионовую кислоту омылением этилцианида и, таким образом, разработал способ получения карбоновых кислот из спиртов через нитрилы. При попытке выделить свободные радикалы — метил и этил — получил (1849) цинкал-килы, которые в дальнейшем широко использовались в органическом синтезе. Получив алкильные производные олова и ртути, ввел (1852) термин металлоорганические соединения . Наблюдая способность к насыщению разных элементов и сравнивая органические производные металлов с неорганическими соединениями, ввел (1852) понятие о соединительной силе , явившееся предшественником понятия валентности. Синтезировал (1862) органические производные бора и лития. Разрабатывая методы получения цинкалкилов и используя их в синтезах, получил кислоты — пропионовую, метакри-ловую, различные оксикислоты. Изучал (1864) свойства ацетоуксусного эфира. Обнаружил трех- и пятивалентность азота, фосфора, мышьяка и сурьмы. Исследовал (1861 —1868) влияние атмосферного давления на процесс горения. Результаты своих работ изложил в книге Исследования по чистой, прикладной и физической химии (1877). [c.526]

    Возникновение дефектов типа горячих трещин или образование трещин вследствие перенапряжений при охлаждении контролируется химическим составом основного и наплавленного металла. Контроль состава может обеспечить получение сварных соединений, которые не имеют трещин. Чувствительность высокопрочной стали к образованию горячих трещин увеличивается, если повышается содержание углерода, серы и фосфора. Кроме того, мышьяк, сурьма и олово также вредные примеси. Если требуется высокопрочная сталь, то для получения высокого предела прочности обычно повышается содержание углерода. При этом следует учесть влияние повышенного содержания углерода на сварку и одновременно ограничить содержание другйх вредных элементов. Соотношение между содержанием углерода, серы, фосфора и склонностью к образованию горячих трещин показано на рис. 9.11 [7, 8]. Диаграмма показывает, что если необходимо устранить возникновение горячих трещин, произведение процентного содержания углерода на содержание (5 % + Р %) должно быть не больше 0,007. Например, для стали с содержанием угле- [c.394]

    ПОЛУТОМПАК — медноцинковый сплав, разновидность латуни. Применяется со второй половины 19 в. В СССР выпускают П, марок Л85 (14—16% Zn 0,3% примесей остальное — медь) и Л80 (19—21% Zn 0,47% примесей остальное — медь). Плотность сплава марки Л85 — 8,75 г/с.и , сплава марки Л80 — 8,66 г см , их предел прочности на растяжение 23—56 кгс1.ч,ч , относительное удлинение 4—52%, НВ = = 50-4-145, П, относится к однофазным альфа-снлавам отличается значительной жидкотекучестью, хорошими коррозионной стойкостью и мех, св-вами, легко поддается обработке давлением в горячем и холодном состоянии. Используют П. и в качестве литейной латуни. Как и у всех латуней, в интервале т-р 200—700° С у П. резко снижается пластичность. Чаще всего в П. содержатся примеси железа, висмута, свинца, сурьмы, мышьяка и фосфора. Железо в небольших количествах (до 0,1%) не оказывает заметного влияния на мех, св-ва сплава. Висмут, свинец, сурьма, мышьяк и фосфор вредно влияют на мех. и технологические св-ва П,, снижают его пластичность, П. выплавляют в индукционных печах, в печах типа АЯКС и ДМК под слоем древесного угля. Т-ра разливки 1160—1180° С, сплав льют в кокили или песчаноглинистые формы. Из П. изготовляют полуфабрикаты в виде проволоки, тонкостенных труб, листов, лент, фасонных отливок, а также проволочные сетки для целлюлозно-бумажного произ-ва и произ-ва строительных материалов, сильфоны и др. изделия. Хим. состав П. регламентирует ГОСТ 15527—70. См. также Томпак. [c.231]


Смотреть страницы где упоминается термин Фосфор влияние мышьяка: [c.339]    [c.23]    [c.140]    [c.188]    [c.325]    [c.339]    [c.412]    [c.443]    [c.305]    [c.169]    [c.170]    [c.173]    [c.149]    [c.69]    [c.306]    [c.577]    [c.840]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.108 ]




ПОИСК







© 2025 chem21.info Реклама на сайте