Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория химии

    Однако, опровергая взгляды алхимиков, Бойль не выдвинул новой теории, потребность в которой ощущалась все сильнее и сильнее. Новая общая теория химии, развитая около 1700 г. Шталем, возникла на основе уже имеющегося опыта проведения металлургических процессов, связанных с реакциями горения, окисления и восстановления. [c.10]

    Поворотным пунктом в развитии теории химии и органической химии, в частности, явился Первый международный конгресс химиков, который проходил Е 1860 году в г. Карлсруэ. С этих пор в химию прочно вошли достаточно строгие определения понятий атом, молекула, эквивалент, атомный и молекулярный вес, валентность. Начала свою жизнь теория валентности, возникновение которой в [c.15]


    В 40-х годах прошлого столетия французские химики Дюма и Жерар выдвинули теорию типов. Согласно этой теории химические свойства веществ связаны с аналогией в составе их молекул и почти не зависят от природы атомов. Это было попыткой построения теории химии исходя только из данных о составе веществ. Различные орга- [c.103]

    Теория валентности сыграла важнейшую роль в развитии теории химии вообще и органической химии в особенности. Исходя из теории валентности, Кекуле предположил, что атом углерода четырехвалентен, и в 1858 г. попытался, опираясь на это предположение, представить строение наиболее простых органических молекул и радикалов В том же 1858 г. шотландский химик Арчибальд Скотт Купер (1831—1892) предложил изображать силы, соединяющие атомы (или связи, как их принято называть), в виде черточек. После того как была построена первая органическая молекула, стало совершенно ясно, почему органические молекулы, как правило, значительно больше и сложнее, чем неорганические. [c.82]

    Что касается решения второго вопроса — о неожиданности открытий и возможности их прогнозирования, то его следует искать в области соотношений эмпирии и теории, а это уже более сложно. Во всяком случае, надо прежде всего решительно отказаться от отождествления понятий случайности и неожиданности открытий. Как было уже сказано, всякое открытие является необходимым, ибо оно запрограммировано логикой объекта изучения, и одновременно случайным, ибо обязательной программы места, времени и персоны, совершающей открытие, не существует. Но далеко не всякое открытие является неожиданным это зависит во многом уже от степени развитости теорий химии. [c.228]

    Среди всех авторов, занимавшихся в 60-х годах XIX в, сопоставлениями атомных весов элементов с частичным учетом их химических свойств и высказывающих в связи с этим притязания на приоритет открытия периодического закона, следует назвать немецкого химика Лотара Мейера. В 1864 г. Мейер в книге Современные теории химии и их значение для химической статистики  [c.71]

    Мейер Л. Новейшие теории химии и их значение для химической статики. СПб., 1800, с. 0. [c.277]

    ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ И ТЕОРИИ ХИМИИ [c.5]

    Г Л А В А I. ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ И ТЕОРИИ ХИМИИ [c.5]

    На основе теор. представлений 1-й пол. 19 в. удалось построить удовлетворит, классификацию орг. соединений. Однако ни одна из ранних теорий не была в состоянии об],яс нить широко распространенное среди углеродистых в-в явление, названное тогда же изомерией. Эту кардинальную задачу решила теория хим. строения, впервые сформулированная А. М. Бутлеровым в 1861. Ее осн. положения а) в орг. молекулах атомы соединяются между собой в определ. порядке согласно их валентности, что обусловливает хим. строение молекул б) хим. и физ. св-ва орг. соединений зависят как от природы и числа входящих в их состав атомов, так и от хим. строения молекул в) для каждой эмпирич. ф-лы можно вывести определ. число теоретически возможных структур (изомеров) г) каждое орг. соед. имеет одну хим. ф-лу, к-рая дает представление о си пах этого соед. д) в молекулах существует взаимное влияние агомов как связанных, так и иепосредственно друг с другом не связанных. Теория хим. строения сразу же стала действенным орудием исследования она дала возможность не только объяснять, но и предвидеть разл. случаи изомерии, предугадывать возможные направления р-ций, делать заключения об их механизмах, прогнозировать существование новых соед. н проводить их планомерный синтез. С этой теории начинается новый период в развитии X., характеризующийся тем, что из науки преим. аналитической она превращается в науку синтетическую. X. этого периода обычно наз. классической. [c.652]


    До развития электронных представлений о строении в-ва В. трактовалась формально. В рамках электронной теории химической связи В. атома определяется числом его неспаренных электронов в основном или возбужденном состоянии, участвующих в образовании общих электронных пар с электронами др. атомов. Поскольку электроны внутр. оболочек атома не участвуют в образовании хим. связей, макс. В. элемента считают равной числу электронов во внеш. электронной оболочке атома. Макс. В. элементов одной и той же группы периодич. системы обычно соответствует ее порядковому номеру. Напр., макс. В. атома С должна быть равной 4, С1-7. Электростатич. теория хим. связи привела к формулировке близкого к В. и дополняющего ее понятия степени окисления (окислит, числа), соответствующей заряду, к-рый приобрел бы атом, если бы [c.344]

    КВАНТОВАЯ химия, раздел теоретич. химии, в к-ром строение и св-ва хим. соединений, их взаимод. и превращения в хим. р-циях рассматриваются на основе представлений и с помощью методов квантовой механики. К. х. тесно связана с экспериментально установленными закономерностями в св-вах и поведении хим. соед., в т. ч. с закономерностями, описываемыми классич. теорией хим. строения. [c.365]

    В рамках классич. теории хим. строения К. с. объясняется как образование электронных пар, общих для связываемых атомов и достраивающих их электронные оболочки в молекуле до замкнутых (с числом электронов 8, 18 и т.д.). Квантовохим. описание К. с. проводят обычно в рамках метода валентных связей (валентных схем) или методов мол. орбиталей. В последнем случае К. с. связывают с мол. орбиталью, локализованной в области, охватывающей неск. (два, три и т. д.) ядер (двухцентровые, трехцентровые и т. д. связи). Такая мол. орбиталь м. б. заполнена одним или двумя электронами. Все электроны молекулы одинаковы, однако обычно считают, что при образовании электронной пары от каждого атома на мол. орбиталь поставляется по одному электрону, и отдельно выделяют случай донорно-акцептор- [c.420]

    Поэтому особо важными являются для теории химии нефти те превращения нафтеновых углеводородов, которые бу-.дут протекать в присутствии природных алюм осиликатов. Наще исследование было посвящено этому вопросу, интересному. ак с точки зрения теории химии нефти, так и практической переработки нефтяных углеводородов. [c.217]

    Вскоре оказалось, что выдвинутая Кекуле бензольная теория химии ароматического ряда создала надежную основу для свободного развития этой отрасли органической химии. По мере накопления опытных данных и уточнения сведений по изомерии в бензольном ряду становилось все яснее, что предложенная Кекуле формула бензола дает в общем правильЕюе представление о строении этого углеводорода. Однако некоторые вопросы все же не могут быть решены с помощью этой формулы. [c.469]

    Углубленное изучение соединений класса 4Н-3,1-бензоксазинов и их гетероаналогов — 3,4-дигидрохиназолино8 — предопределено их высокой биологической (в частности фармакологической) активностью. С другой стороны, изучение гетероциклов, аннелированных с бензольным ядром, важно для развития общей теории химии гетероциклов. [c.44]

    Основы термохимии заложили Ломоносов, Лавуазье и П. С. Лаплае (Франция). В теоретических и экспериментальных исследованиях они почти на столетие опередили современников. В выводах, полученных Лавуазье иа калориметрических наблюдений (1777—1789 гг.), легко можно заметить, как близко он подошел к открытию закона постоянства теплоты реакции, заявляя, что . .. количество теплоты, необходимое для разложения соединения на его соатавные части, в точности равно количеству теплоты, выделяющемуся при образовании того же соединения из составных частей . Лишь слабое развитие общей теории химии и неудачно сложившаяся историческая обстановка помешали окончательному открытию закона, установленного в 1840 г. русским ученым Г. И. Гессом (1802—1850) и ставшего основой термохимии. [c.68]

    В настоящее время, когда наука стала непосредственной производительной силой и теорию химии все в большей степени используют для рещения производственных проблем, трудно сказать, какой учебный материал не имеет политехнического значения. Все изучаемые в щколе теоретические вопросы служат основой для понимания производственных процессов. В этих условиях не так существенно детальное знание отдельных производств, как усвоение их общих закономерностей. [c.57]

    Во-первых, она представляет собой попытку изложения основных законов и теорий химии как естественно-научной дисциплины в связи с проблематикой химической технологии, являющейся одной из технических наук. Она призвана, таким образом, хотя бы ы первом приб.чпжении объединить две отрас.чи знаний, которые д( сих пор в высших учебных заведениях представляли два разных учебных предмета. До недавнего времени для тако1о объединения еще не было оснований. Св1 одня же эти основания появились на наших глазах происходит синтез химии и химической технологии в единую науку. Более того, только изучение взаимосвязей этих двух отраслей знания дает возможность глубоко проникнуть в их содержание, в их социальное назначение и в их проблемы. [c.5]


    Как ни парадоксально, но исторически обстоятельства сложились таким образом, что первой теорией химии оказалась ложная теория. И, вероятно, еще более парадоксальным является то, что именно ей суждено было стать, по крайней мере в конце XVII — первой трети XVIII в., главным условием и основной движущей силой реализации той исследовательской программы, которая наметилась в работах Бойля по химическому анализу и которая вела к представлениям о химических, элементах. Или, иначе говоря, этой теории суждено было сделаться посредником полного освобождения химии от алхимии. [c.37]

    Эволюция поиятия структуры в связи с появлением электронных теорий химии. Хотя и весьма условно, но в химии принято считать классическим период до появления электронных представлений. Однако проникновение в химию первых электронных представлений скорее следовало бы считать завершением классической химии, чем началом неклассического периода. В самом деле, что принесли химии первые — именно первые — электронные представления, вызванные открытием электрона (1897) и выдвижением гипотезы [c.89]

    Настоящее же широкое признание химической статики пришло в результате открытия зз Кона действующих масс и создания количественной теории хим ических равновесий К. М. Гульдбергом и П. Вааге (1864—1867), которые сумели использовать для этих це-,тей тогдашние успехи атомно-молекулярного учения. Взяв за основу открытие Бертолле, — пишет Я. Г. Вант-Гофф по поводу работ Гульдберга и Вааге, — а именно, что количество вещества (масса) влияет на конечное состояние равновесия, они ввели в науку точные понятия относительно величины этого количества вещества  [c.111]

    В книге большое внимание уделено теоретическим основам курса. Сюда в первую очередь относятся квантово-механические представления в области строения атома, теории хими ческой связи и периодический закон. Эти вопросы разрабо таны более подробно. Значительное внимание уделено злек трохныии и вопросам коррозии металлов — в связи с их з лг чением для инженеров сельскохозяйственного производства Должное место нашли химия высокомолекулярных соединений коллоидная химия, основы фото и радиационной химии. [c.2]

    В первом томе, посвященном теории химии, автор трактует химические явления с точки зрения движения мельчайших частиц, вызванного силами притян ения и отталкивания. Книга Г. Бургаве в XVIII в. пользовалась во многих странах большой известностью. Опа многократно переиздавалась как на языке подлинника (латинском), так и в переводах и сыграла немалую роль в распространении среди химиков теории Ньютона. [c.116]

    Теоретической основой научного познания мира является марксистско-ленинская философия. Она основана на диалектическом материализме. Сущность диалектического материализма состоит в том, что мир материален (состоит из лгатерии) г существует лишь в движении (изменении). Таким образом, основным свойством материи является движение. Ф. Энгельс писал Предмет естествознания — движущаяся материя, тела . Химия, как известно, является частью естествознания. Факты, законы и теории химии представляют естественнонаучные доказательства положений диалектического материализма. Закон сохранения массы вещества, законы стехиометрии, периодический закон Д. И. Менделеева являются частными выражениями принципов марксистско-ленинской философии о несотворимости и неуничто-жимости материи, о материальном единстве мира, о связи взаимообусловленности всех его частей. [c.517]

    До развития электронных представлений о строении в-ва В. трактовалась формально. В рамках электронной теории хим. связи (см. Ковалентная связь) В. атома определяется числом его неспаренпых электроиов в основном или возбужденном состояниях, участвующих в обра )ванин общих электронных пар с электронами др. атомои. Поскольку электроны внутр. оболочек атома не участвуют н образовании хим. связей, макси.мальную В. элемента считают равной числу электроноп по внеш. злектронной оболочке атома. Максимальная В. элементов одной и той же групиы периодич. системы обычно соответствует ее порядковому номеру. Напр., максимальная В. атома С должна быть равной 4, С1 — 7. Электростатич. теория хим. связи (см. Ионная связь) привела к формулировке близкого к В. и дополняющего ее понятия степени окисления (окислит, числа). Степень окисл. соответствует заряду, к-рый приобрел бы атом, если бы все электронные пары его хим. связей сместились в сторону более электроотрицат. атомов. ll[in том электронные пары, обобщенные одинаковыми атомами, делятся пополам. По знаку степень окисл., как правило, совпадает с экспериментально определяемым эффективным зарядом атома, но численно намного превышает его. Нанр., степень окисл. серы в SO3 равна -f-6, а ее эффективный заряд — ок. 4-2. [c.91]

    М. о. м. успешно примен. для высокосимметричных молекул, прежде всего молекул комплексов переходных металлов (см. Поля лшандов теория). На основе М. о. м. строится б. ч. полуэмпирических методов и неэмпирических методов квантовой хи>П1И. Осп. понятия М. о. м. использ. в теории хим. связи и реакционной способности, в мол. спектроскопии. [c.350]

    Быстрое развитие науки и техники в 20 в. привело к совершенствованию методов термохим. измерений и резкому повышению их точности. Развиваются термохим. исследования соед. бора, фтора, кремния, фосфора, РЗЭ, полупроводников, комплексных соед. и др. Интенсивно разрабатыг вается Т. биол. процессов, поверхностных явлений, полимеризации. Квантовая химия в принципе позволяет вычислять теплоты образования и эпергии хиМ. связей, однако пока это возможно лишь в простейших случаях. Поэтому эксперим. методы остаются в Т. основными и наиболее точными. Для приближенной оценки неизвестных тепловых эффектов использ. эмпирич. методы, базирующиеся иа установленных термохим. закономерностях. Данные Т. использ. в теор. химии и применяют в практике для расчета аппаратуры, теплового баланса, оптим. режима процесса, при создании новых видов топлива., . , , . ,  [c.569]

    Полное понимание физ. сущности хим. явлений оказалось возможным только после появления в 1926 квантовой механики, т. к. лишь на ее основе была вскрыта природа ковалентной хим. связи. Чтобы отметить произтиелии е изменение характера теории хим. явлений, А. Эйкеп свое руководство, в первых двух изданиях называвшееся Основы физической химии>, в третьем издании, появившемся в 1930, озаглавил Учебник химической физики . С этого времени термины Ф. X. и хим. фldзикa употребляются наравне, как синонимы. В таком п0г[имании Ф. х. включает следующие в значительной мере самостоят. разделы квантовую химию, термодинамику химическую, кинетику химическую, учение о катализе, коллоидную химию, физико-хими- [c.620]

    Теория хим. строения была позднее распространена на установление структур непредельных, аром, и алициклич. соединений (Кекуле, К. Э. Эрленмейер, В. В. Марковников, А. Байер и др.) ее дальнейшим развитием явилось учение о взаимном влиянии аггомов в молекулах, определ5по-щем св-ва соединений (Марковников, А. М. Зайцев). Все это способствовало развитию синт. работ. 70-е и послед, годы [c.652]

    Знания Э. п. достаточно для расчета средних значений таких величин, как, напр., дипольный момент молекулы. Э. п. часто использ. для построения молекулярных электростатич. моделей, опирающихся на понятие об эффективных зарядах атомов и порядках связей. Эти понятия — основа большого числа качеств, и полуколичеств. теорий хим. связи, что и определяет роль Э. п. в квантовой химии как осн. средства интерпретации квантовомех. результатов в духе классич. представлений. [c.700]

    АКТИВИРОВАННОГО КОМПЛЕКСА ТЕОРИЯ (теория переходного состояния, теория абс скоростей р-ций), простейший и исторически первый вариант статчстич. теории хим. р-ций. Разработана Э. Вигнером, М. Поляни, Г. Эй-рингом, М. Эвансом в 30-х гг. 20 в. Позволяет приближенно рассчитьшать скорость элементарных термич. хим. р-ций, исходя из электронного строения и св-в молекул реагентов. В основе теории лежит фундаментальное для химии понятие многомерной поверхности потенциальной энергии (ППЭ) р-ции. Для микроскопия, системы частиц (атомов, молекул), между к-рыми может происходить р-ция (в дальнейшем такую систему будем называть химической), ППЭ-ф-ция потенциальной энергии атомных ядер U от их внутр. координат, или степеней свободы. В системе из и адер число внутр. степеней свободы N = Зп — 6 (или Зп — — 5, если все адра расположены на одной прямой линии). Простейшая двухмерная (N = 2) ППЭ показана на рис. 1. Реагентам и продуктам р-ции на ней соответствуют области относительно небольшой потенциальной энергии (долины), разделенные областью повыш. энергии-потен- [c.73]

    Большое внимание уделяется теории методов анализа. Теория хим. и частично физ.-хим. методов базируется на представлениях о нескольких осн. типах хим. р-ций, широко используемых в анализе (кислотно-основных, окислит.-вос-становит., комплексообразоваиия), и нескольких важных процессах (осаждения-растворения, экстракции). Внимание к этим вопросам обусловлено историей развития А.х. и практич. значимостью соответствующих методов. Поскольку, однако, доля хим. методов уменьшается, а доля физ.-хим. и физ. методов растет, большое значение приобретает совершенствование теории методов двух последних групп и интегрирование теоретич. аспектов отдельных методов в общей теории А.х. [c.159]

    В химии металлоорг соед. И.а.п. выполняет роль, аналогичную роли теории хим. строения в орг. химии. При таком использовании И. а. п. допустимо упрощение определения изолобальности изолобальными можно назвать группы с одинаковым числом ГО и одинаковым числом электронов на них при соблюдении этих условий примерное соответствие в пространств, строении, энергии и симметрии ГО обычно обеспечивается автоматически. При определении числа ГО металлоорг. фрагмента надо учитывать, что в отличие от элементов главных подгрупп переходные металлы имеют по девять валентных орбиталей. [c.185]

    Подлинное объяснение И. получила лишь во 2-й пол. 19 в. на основе теории хим. строения А. М. Бутлерова (структурная И.) и стереохим. учения Я. Г. Вант-Гоффа (пространственная И.). [c.187]

    Квантовохим исследования позволили выявить рад новых особенностей движения ядер частиц, составляющих молекулу. Так, было обнаружено наличие множественных минимумов на потенц. пов-стях, разделенных сравнительно невысокими потенц. барьерами. Кроме того, обнаружена высокая чувствительность электронного строения молекул в возбужденных состояниях к изменению конфигурации их ядер и к малым внеш. возмущениям. Переход к локализованным мол. орбиталям позволил по-новому оценить такие понятия классич. теории хим. строения, как двухцентровые связи, возбуждение той или иной отдельной связи или функц. группы в молекуле и т. п., а также подтвердил возможность использовать характеристики, относящиеся к данному мол. фрагменту (напр., параметры распределения электронной плотности, энергию фрагмента и др.), для всех молекул одного гомологич. ряда, включающих этот фрагмент. [c.366]

    Электронное строение. Теория хим. связи в кластерных соед. находится в стадии разработки. В большинстве теоретич. работ устанавливают связь между общим числом т.наз. кластерных валентных электронов (КВЭ) и строением остова. Общее число КВЭ вычисляют по след, схеме к суммарному числу электронов валентных оболочек атомов металлов, образующих остов молекулы К., прибавляют число электронов, предоставляемых лигандами по обычным правилам (см. Металлоорганические соединения) для кластерных ионов прибавляется также заряд К., взятый с обратным знаком. Напр., для Н2Ки (СО)]8 число КВЭ = = (6-8), -Ь (2 - 18)ео + (2 - 1)н = 86 для Со,(СО),, (6-9)с -Ь + (2- 16)со = 86, для [Со, (СО), 5] - (б -9)с + (2- 15)со + 2 = = 86. Осн. особенность небольших полиэдрич. К.-существо-вание магических чисел КВЭ, определяющих геометрию полиэдров, что особенно хорошо соблюдается для разл. К. переходных металлов однотипного строения. Изменение числа валентных электронов приводит к перестройке метал-лополиэдра. Так, для треугольных К. магическое число КВЭ 793 [c.401]


Смотреть страницы где упоминается термин Теория химии: [c.148]    [c.10]    [c.7]    [c.277]    [c.92]    [c.92]    [c.264]    [c.621]    [c.345]    [c.365]    [c.366]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.142 , c.143 ]




ПОИСК







© 2024 chem21.info Реклама на сайте