Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин связывание

    Активация молекулярного кислорода за счет комплексообразования имеет большое биохимическое значение. Классическим примером является присоединение кислорода к гемоглобину (см. стр. 625). Образование комплексов с участием молекул N2 в качестве лигандов играет важную роль при фиксации атмосферного азота клубеньковыми растениями, а также в процессе каталитического синтеза аммиака. По-видимому, в естественных условиях (обычные температура и давление) биохимическое связывание атмосферного азота осуществляется с участием комплексов Ре и Мо. [c.464]


    Часто вместо уравнения (7.69) связывание кислорода гемоглобином описывают уравнением Хилла [c.233]

    Гемы входят в состав гемоглобина, выполняющего в организме функцию переносчика кислорода. Активным центром в процессе связывания кислорода является атом железа (II) гема. Процесс присоединения кислорода обратим в легких, где парциальное давление кислорода высокое,, молекула Од присоединяется к атому железа, а в тканях, где парциальное давление кислорода низкое, кислород освобождается. [c.587]

    Молекула гемоглобина человека, подобно гемоглобину других млекопитающих, состоит из четырех полипептидных цепей (каждая из которых содержит одну гем-группу) и способна обратимо присоединять четыре молекулы кислорода. Уже много лет назад было показано, что равновесное связывание кислорода гемоглобином описывается S-образной кривой, приведенной на рис. 15.12, которая отличается от аналогичной кривой для миоглобина. Для миоглобина, содержащего одну гем-группу в молекуле, следует ожидать кривую равновесия, отвечающую реакции [c.440]

    Рассмотрим теперь вопрос о природе кооперативного связывания кислорода с тетрамерной ( 2 2) молекулой гемоглобина (разд. Г.8) и физиологическое значение этого процесса [65]. Полипептидная цепь [c.304]

    Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Окисление Ре(П) после первой стадии связывания в них не осуществляется. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях-кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, [c.260]

    Далее, путем модификации остатка пропионовой кислоты в боковой цепи порфиринового кольца был введен второй имидазольный лиганд, соответствующий проксимальному гистидину природных переносчиков кислорода. Интересно, что все структурные элементы активного центра миоглобина или гемоглобина, которые существенны для связывания кислорода, присутствуют [c.368]

    Изменение конформации полипептидных цепей гемоглобина при связывании кислорода — пример так называемой аллостерии. Известны аллостерические формы и у других белков, преимущественно у фермен- [c.443]

    Связывание кислорода гемоглобином можно описать математически следующим набором равновесий, где НЬ обозначает молекулу гемоглобина, которая может присоединять четыре молекулы кислорода  [c.232]


    Посттрансляционные события при синтезе гемоглобина — связывание гемов с субъединицами глобина и объединение субъединиц в молекулы при синтезе коллагена — окисление некоторых остатков пролина в оксипролин, объединение цепей в молекулы тропоколлагена, в фибриллы и коллагеновые волокна при синтезе протромбина — карбоксилирование некоторых остатков аминокислот (глутамата). [c.326]

    Зависимость степени насыщения гемоглобина кислородом от парциального давления кислорода должна описываться несколько другим уравнением, как это видно из рис. 7.5. Особенностью кривой для гемоглобина является то, что по мере связывания молекул кислорода сила связи кислорода с гемоглобином не уменьшается, как в большинстве равновесий, включающих последовательно связываемые лиганды (в данном случае молекулы кислорода), а увеличивается. Эта особенность имеет огромное физиологическое значение, поскольку оксигемоглобин диссоциирует с выделением кислорода в значительно более узком интервале [c.231]

    Четыре субъединицы гемоглобина удерживаются вместе в результате слабого взаимодействия между комплементарными поверхностями (см. разд. 15.5 и рис. 15.13, на котором показаны только две субъединицы из четырех). Комплементарность частично нарушается при связывании одной молекулы кислорода и снова восстанавливается при связывании второй молекулы кислорода. Различием в энергии взаимодействия между комплементарными поверхностями и объясняется более низкое значение константы связывания для первой молекулы кислорода и более высокое — для второй. [c.442]

    Если гемоглобин и миоглобин —это единоличные представители, участвующие в процессе Оз-поглощения, то цитохромы и хлорофиллы представлены несколькими десятками соединений каждой группы. Цитохромы варьируются в незначительной степени от строения порфиринового цикла и в большей степени — от полипептидного окружения от их количества, строения и способа связывания с гемом — ковалентное или нековалентное). Хлорофиллы различаются между собой степенью гидрирования порфиринового цикла и набором заместителей при ном [c.265]

    Связывание кислорода гемоглобином демонстрирует особые свойства, которые может проявлять белок в реакциях присоединения. В отличие от большинства реакций с участием малых молекул сродство белка к лиганду может возрастать по мере присоединения все новых молекул лиганда. [c.211]

    Приведенные выше биохимические равновесия включали небольшие молекулы, однако во многих таких равновесиях участвуют макромолекулы, например белки и нуклеиновые кислоты. В качестве примера рассмотрим связывание кислорода гемоглобином. [c.231]

    СВЯЗЫВАНИЕ КИСЛОРОДА МИОГЛОБИНОМ И ГЕМОГЛОБИНОМ [c.231]

    Другой широко распространенный наркотик —микоти (разд. 7.8.1.5). Этот алкалоид из табака чаще всего поступает в организ(м при вдыхании табачного дыма от сигарет, сигар, трубки. Он очень ядовит, особенно если попадает непосредственно в кровь. Курение оказывает возбуждающее действие, но с другой стороны, вредно влияет на организм человека так, например, никотин неблагоприятно действует на слизистую оболочку желудка и на кровообращение, поскольку в крови курильщика часть гемоглобина постоянно блокирована связыванием оксида углерода. Кроме того, твердо установлено, что рак легких у курящих встречается гораздо чаще, чем у некурящих. [c.341]

    Многие металлопротеиды содержат особые металл-связывающие простетические группы, примером которых может служить порфириновая группа в гемоглобине (рис. 10-1). Иногда специфический центр связывания создается кластерами из карбоксильных, имидазольных или других групп. В качестве одного из лигандов в некоторых белках может выступать МН-группа пептидной связи, которая утратила протон. Небольшие пептиды реагируют с ионами Си +, образуя комплексы [30, 31] в некоторых из них ион меди ковалентно связан с азотом амидной группы [уравнение (4-38), стадия б]. [c.268]

    Донорно-акцепторное взаимодействие подразумевает комплементарную пространственную упорядоченность центров связывания в доноре и акцепторе. Поэтому в любом синтетическом до-норно-акцепторпом комплексе центры связывания (полярные и дипольные) и стерические барьеры должны быть локализованы определенным образом, чтобы структуры обоих компоиентов соответствовали друг другу. Свойства существующих в природе акцепторов, мицелл и циклодекстринов рассмотрены в следующих разделах данной главы. Простетические группы гемоглобина, хлорофилла или витамина В12 также принадлежат к этой категории, поскольку селективно связывают ионы железа, магния и кобальта. [c.267]

    Наконец, следует напомнить, что железо, связанное с порфи-рииом (гем), находится в ферросостоянии. Процесс связывания кислорода гемоглобином обратим, причем молекула кислорода и атом л<елеза находятся в стехиометрическом соотношении 1 1 и не происходит окисления Ре(П) до Ре(П1). Исследованию такого обратимого связывания молекулярного кислорода с Ре(П) в геме уделено очень большое внимание. Способность гема обратимо связывать кислород, проявляется при его включении в большую белковую структуру. Одиако если гем извлечь из белка и поместить в раствор при комнатной температуре, молекулярный кислород необратимо окисляет железо до феррисостояния Ре(П1). [c.361]


    Близость порфирииовой системы к определенным остаткам пептидной цепи гемоглобина может стерически препятствовать связыванию СО или О2 с Ре(П). Чтобы оценить влияние такого стерического эффекта, Трейлор и сотр. разработали два варианта [c.363]

    Читателю предоставляется интересная возможность проанализировать, можно ли на основании этого уравнения предсказать слабое кооперативное связывание кислорода гемоглобином миноговых. [c.302]

    Железо имеет громадное значение для биологии животных организмов, так как является катализатором дыхательных процессов. Организм взрослога человека содержит около 4 г Ре, из которых приблизительно 60% входит в состав гемоглобина. Основной функцией этой доли железа является связывание молекулярного кислорода и перенос его в ткани. Последние, в свою очередь, содержат органические соединения Ре, катализирующие процессы дыхания в клетках. Из отдельных частей организма наиболее богаты железом печень и селезенка. Ежедневная потребность человека в железе составляет около I мг для мужчин или 2 мг для женщин и полностью покрывается обычной пищей. В больших дозах растворимые соединения железа ядовиты (соли Ре" более, чем соли Ре" ). [c.443]

    Из1вестно, что в одном конформационном состоянии фермент лучше связывается с субстратом, чем в другом. Этот простой факт, а также тенденция мономеров белков ассоциировать приводит к ряду интересных эффектов, природа которых долгое время оставалась загадкой для ученых. Сейчас мы знаем, что кооперативные изменения конформации в олигомерных белках лежат в основе многих важных аспектов регуляции активности ферментов и метаболизма. Эти изменения вносят элемент кооперативности в связывание малых молекул (например, кислорода гемоглобином), а также субстратов и регуляторных молекул с ферментами. Вполне возможно, что многие фундаментальные свойства живых организмов непосредственно связаны с кооперативными изменениями в фибриллах, мембранах и других структурах клетки. По этим причинам было бы весьма полезно рассмотреть этот вопрос (в частности, его количественную сторону) более подробно. [c.297]

    Sepharose L-4B активировали окислением в 0,2 М NalO в течение часа в темноте. Для связывания с окисленной сефарозой гемоглобин переводили в форму цианметгемоглобина действием феррицианида и цианистого калия. Ковалентное связывание в присутствии NaBH< проходило нацело — до концентрации 5 мг на 1 мл сорбента. 100 мл плазмы крови, содержащей до [c.414]

    Кооперативность связывания кислорода с гемоглобином была открыта очень давно, и, несмотря на это, важность данного явления недооценивали. Оно вновь привлекло к себе широкое внимание в 1965 г., когда Moho, Уаймен и Шанжё [33] описали его математически. Поскольку для многих случаев предложенная авторами модель является сильным упрощением, ниже мы остановимся на более общем подходе к этому вопросу, разработанном Кошландом [60—62]. [c.297]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]

    Если в случае дезоксигемо-глобина никакой заметной диссоциации тетрамера на субъединицы не наблюдается, то оксиге-моглобин слабо диссоциирует на ар-димеры (/С = 2-10- ). Вопросу связывания гемоглобинов с кислородом посвящено огромное [c.306]

    Рассмотрим случай, когда константа Къв очень мала и Ва легко диссоциирует на мономеры. Тогда присоединение X приведет к диссоциации димера. Хорошо известным примером белка такого рода может служить гемоглобин миноговых, который представляет собой димер и после связывания кислорода диссоциирует на мономеры [64]. В этом случае уравнение (4-49) сводится к такому виду  [c.302]

    Кооперативный характер связывания О2 гемоглобином иллюстрируется кривыми, приведенными на рис. 4-18. Значение мхилл [уравнение (4-35) зависит от условий и может достигать трех. Физиологическое значение кооперативного связывания ясно. В капиллярах легких при парциальном давлении кислорода, равном 100 мм рт. ст., гемоглобин почти полностью насыщен кислородом, однако когда эритроциты проходят через капилляры тканей, потребляющих кислород, его парциальное давление падает примерно до 5 мм рт. ст. Кооперативность приводит к [c.305]

    Каким образом присоединение О2 к гемовому железу вызывает конформационное изменение гемоглобина Как указано в гл. 10 (разд. Б.4), при связывании с кислородом атом железа в геме, по-видимому, смещается в плоскости гемогруппы приблизительно на 0,06 нм [73]. Это смещение передается через гистидин F-8, и спираль F смещается в сторону гема в результате происходит изменение третичной структуры, приводящее к ослаблению водородных связей в области а1р2-контактов и солевых мостиков между субъединицами. Несмотря на тщательные рентгеноструктурные исследования, детали механизма, инициирующего конформационные изменения при присоединении О2, остаются неясными. Необходимо иметь в виду, что разрешение, которое удается получить при рентгеноструктурном исследовании кристаллов белков, позволяет установить локализацию легких атомов с достаточной точностью, в результате чего механизм передачи кооперативных эффектов не поддается непосредственному изучению и его приходится выяснять, исходя из изменений третичной структуры субъединиц при атшеплении лиганда от Р(т. е. окси-)- или при присоединении его [c.307]

    РИС. 4-19. Г. Дифференциальная карта, показывающая изменение электронной плоти остп при связывании гемоглобина с 2,3-дифосфоглицератом (ДФГ) (светлые контуры), наложена на карту, изображенную на рнс. 4-19, В. Области, где электронная плотность увеличивается, обведены сплошными светлыми линиями и обозначены заглавными буквами области, где электронная плотность уменьшается, обведены светлыми пунктирными линиями и обозначены прописными буквами. Молекула ДФГ с усредненной симметрией наложена на карту таким образом, чтобы она совпала с областью максимального увеличения электронной плотности на осп 2-го порядка. Наличие двух пар областей с увеличенной и уменьшенной электронной плотностью, обозначенных через Р1, р1 н Р2, р2, показывает, что прн связывании гемоглобина с ДФГ N-концевые а-амнногруппы и гистидины Н-21 перемещаются внутрь структуры. Сильное уменьшение электронной плотности в области р4 указывает на то, что [c.311]


Смотреть страницы где упоминается термин Гемоглобин связывание: [c.262]    [c.10]    [c.85]    [c.262]    [c.363]    [c.369]    [c.369]    [c.371]    [c.371]    [c.578]    [c.442]    [c.60]    [c.254]    [c.296]    [c.306]    [c.306]   
Катализ в химии и энзимологии (1972) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин

Связывание



© 2025 chem21.info Реклама на сайте