Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чугун титановый

    Известно [4—9], что аммиак не является коррозионноактивным агентом по отношению к сталям, чугунам, титановым сплавам, но вызывает интенсивную коррозию меди, латуни, бронз и других медных сплавов, особенно в присутствии влаги и кислорода. [c.279]

    Лезвийная и абразивная обработка чугунов и сталей, жаропрочных, титановых сплавов [c.405]

    Лезвийная и абразивная обработка стали, чугуна, алюминиевых и титановых сплавов, прокатка цветных металлов Абразивная и лезвийная обработка цветных металлов и сплавов, жаропрочных сталей и сплавов, композиционных материалов [c.406]


    Применение элементов подгруппы титана. Титан вдвое легче стали, а титановые сплавы в. 3 раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотность значительно меньше, чем последних. Поэтому титан и сплавы на его основе широко используются в авиа- и судостроении, космической технике. Кроме того, титан и цирконий используются как в качестве легирующих добавок к черным и цветным сплавам, так и в качестве основы конструкционных материалов, способных работать в экстремальных условиях. Для легирования сталей и модифицирования чугунов обычно используют ферротитан и ферроцирконий (сплавы с железом, содержащие 20—40% Ti или Zr). Добавка к стали уже 0,1% Ti способствует повышению ее твердости и эластичности. Такая сталь идет на изготовление рельсов, вагонных осей и т. п. Добавки циркония в таком же количестве резко повышают вязкость стали (броневые плиты). [c.244]

    Электроплавка титановых шлаков. Восстановительная электроплавка, несмотря на ее сложность и энергоемкость,— в настоящее время основной процесс пирометаллургического обогащения ильменитовых и других железо-титановых концентратов. В результате плавки получают обогащенные титаном шлаки и чугун. [c.249]

    Выплавка титановых шлаков характеризуется следующими показателями от исходного содержания в концентрате извлекается в шлак до 98,5% Ti, 3,5% Fe, 70% Si в чугун переходит 96—97% Fe, до 1,5% Ti, 10—20% кремния расход электроэнергии на 1 т шлака 3000— 3800 кВт-ч. Выплавляют шлаки в руднотермических печах мощностью 3000—5000 кВа. Шлаки в расплавленном состоянии разрушают большинство огнеупорных материалов, поэтому режим плавки подбирают так, чтобы на стенках печи образовывался слой гарниссажа. [c.250]

    В руднотермических электропечах осуществляют многие восстановительные процессы, в ходе которых загружаемые в печь руды, представляющие собой окислы различных элементов, в присутствии восстановителя (обычно углерода) при высокой температуре восстанавливаются и сплавляются с железом, содержащимся в шихте, давая в виде конечного продукта сплав данного элемента с железом. К ним также относятся получение карбида кальция СаСг при восстановлении кальция из СаО (обожженного известняка) е условиях избытка углерода в шихте получение так называемого роштейна при плавке медно-никелевых сернистых руд получение электрокорунда плавка муллита получение карборунда графитирование прессованных электродов получение карбида серы, карбида бора, титановых шлаков, конденсационного цинка и свинца и некоторые другие. К таким процессам следует также отнести возгонку фосфора, получе- 1ие черного цианида и электроплавку чугуна. В настоящее время разрабатываются в промышленном масштабе процессы получения руднотермическим путем (плавкой в электропечи) силикоалюминия и других продуктов, осуществление которых будет значительно рентабельнее, например, применяющегося ныне для получения алю.чи-ния процесса электролиза. [c.116]


    Весьма плодотворным в ряде конструкций является принцип создания композиционных конструкций из разнородных металлов с использованием долгоживущих протекторов или так называемых жертвенных деталей. Например, в запорной арматуре наиболее ответственным является узел затвора тарелка, седло клапана, шпиндель. Их следует изготавливать из более стойких материалов (нержавеющие стали, медные, титановые сплавы), катодных по отнощению к корпусу клапана (чугун, сталь, медные сплавы, нержавеющие стали). Некоторое увеличение скорости коррозии корпуса клапана из-за контакта с более положительными по потенциалу деталями узла затвора не скажется на сроке службы клапана, который будет даже выше, чем при гомогенном исполнении. Использование различного рода вытеснителей, перегородок из углеродистой стали, находящихся в контакте, допустим, с трубками из нержавеющих сталей теплообменников, охлаждаемых морской водой, позволяет полностью подавить усиленную язвенную коррозию трубок при теплопередаче в морскую воду. [c.81]

    ЖЕЛЕЗНЫЕ СПЛАВЫ, обладают высокими значениями прочности, пластичности, хорошей свариваемостью, износостойкостью и др. полезными св-вами, к-рые можно изменять в широких пределах легированием, термической и др. видами обработки. По нек-рым характеристикам (жаропрочности, корроз. стойкости и др.) уступают никелевым, титановым, кобальтовым и алюминиевым сплавам, однако более дешевы. См. также Инвар, Ковар, Пермендюр, Сталь, Фехраль, Хромаль, Чугун, Элинвар. [c.201]

    Магний в чугуне можно определять также фотометрическим методом с титановым желтым [259]. Железо и некоторые примеси отделяют бензоатом натрия. При содержании 0,02—0,05% магния относительная ошибка метода в пределах 10—20%. Об определении магния с титановым желтым в углеродистых и низколегированных сталях, а также в сплавах на хромовой основе см. в [13]. [c.209]

    МФС-8 — анализ чистых металлов (А1, Си, Ag, Аи, РЬ, N1) на примеси цветных сплавов (алюминиевых, магниевых, титановых, медных, цинко вых и др.) углеродистых и среднелегированных сталей и чугунов - на вс легирующие элементы и примеси (кроме 8) порошкообразных чистых ма териалов, оксидов, ферросплавов и шлаков технических растворов I сточных вод (с предварительным выпариванием) руд и грунтов. [c.788]

    В зависимости от условий работы (давление, температура, химическая активность среды) применяют следующие трубы чугунные (из серого й кремнистого чугуна) стальные (из углеродистых и нержавеющих сталей) алюминиевые, свинцовые, титановые, керамические, стеклянные и фарфоровые, пластмассовые (винипластовые, полиэтиленовые, фторопластовые, фаолитовые) из углеграфитовых материалов стальные, покрытые изнутри резиной (гуммированные), футерованные винипластом, полиэтиленом, эмалированные. [c.20]

    Обратные клапаны изготовляются из чугуна без антикоррозионной защиты, а также футерованные полиэтиленом, из стали й титановых сплавов. , [c.41]

    Не поглощают водород золото, вольфрам, ртуть. Наиболее опасно внедрение водорода в сталь — основной современный конструкционный материал, чугун, железо. При высокотемпературном наводороживании водород разрушает карбиды железа, которые упрочняют сталь. При этом структура стали меняется, а ее прочность резко падает. Титановые, ванадиевые, молибденовые стали являются надежным средством против водородной коррозии. Карбиды этих металлов не реагируют с атомами водорода. Роль этих металлов при получении качественных сталей заключается в том, что они связывают весь углерод и тем самым предотвращают образование нестойких к водороду карбидов железа. [c.500]

    Обратные клапаны изготавливаются из чугуна без антикоррозионной защиты, а также с футеровкой из резины и полиэтилена из стали и титановых сплавов. [c.198]

    Пикраминазо — порощок коричневого цвета. Нерастворим в кислотах и холодной воде. Растворим в ацетоне, этаноле и растворах щелочей. Применяют для фотометрического определения магния в чугунах, титановых и алюминиевых сплавах, а также в водах и биологических материалах. [c.186]

    Предназначены для откачки неагрессивных по отношению к чугуну газов и паров с целью создания вакуума, в закрытых аппаратах, кроме насосов ВВН1-50Т (для газов, в которых стоек титановый сплав) и ВВН2-50Х, ВВН-ЗН и ЖВН-12Н (для газов, в которых стоек сплав на никелевой основе). В качестве рабочей жидкости применяется вода. [c.846]

    Влияние концентрации растворенного кислорода на коррозию образцов из 181 металла и сплава в морской воде было исследовано в экспериментах, проведенных Строительной лабораторией ВМС США [132]. Был проведен линейный регрессионный анализ данных, полученных при экспозиции 12-мес на глубинах 1,5 760 и 1830 м (содержание кислорода 5,75, 0,4 и 1,35 мг/кг соответственно). Линейное возрастание скорости коррозии при повышении концентрации кислорода в морской воде наблюдалось для следующих металлов углеродистые и низколегированные стали, чугун, медные сплавы (за исключением Мунц-металла и марганцовистой латуни марки А), нержавеющая сталь 410, сплавы N1—200, Моннель 400, Инконель 600, Инконель. 750, №—ЗОМо—2Ре и свинец. Скорости коррозии многих других сплавов возрастали с температурой, но зависимость не была линейной. Многие сплавы не подвергались коррозии в течение года ни в одной из испытывавшихся партий образцов. К таким металлам относятся кремнистые чугуны, некоторые нержавеющие стали серии 18Сг—8М , некоторые сплавы систем N1—Сг—Ре и N1—Сг—Мо, титановые сплавы, ниобий и тантал. [c.176]


    И - легирующая и модифицирующая добавка к чугунам, сталям и сплавам Его используют при получении высокопрочного чугуна (с шаровидным графитом), нержавеющих и жаростойких хромистых сталей И повышает жаростойкость и жаропрочность сплавов на основе N1, Со, Сг, Nb и др, увеличивает прочность и пластичность тугоплавких металлов и сплавов на основе У, Ш, 2г, Мо, Та, упрочняет титановые, медные и др сплавы, входит в состав сплавов на основе М и А1, используемых в авиационной технике В электронике и радиотехнике сплавы И с Ьа, А1, 2г применяют в качестве геттеров Из тугоплавких и огнеупорных материалов на основе боридов, сульфидов и оксидов И изготовляют катоды для мощных генеоаторов Ортована-дат и оксисульфид И, активированные Ей,-красные люминофоры для цветного телевидения, оксисульфид, активированный ТЬ,-люминофор для мед диагностики, алюминат И - лазерный материал [c.278]

    Восстановит, плавку ильменитовых концентратов ведут в электродуговых печах при 1600-1700 °С, загружая в печи брикетированную или порошкообразную шихту и получая два продукта - чугун и титановый шлак. Извлечение Т. в шлак составляет 96,0-98,5%, Fe в чугун-96-97%, расход электроэнергии иа 1 т шлака 1900-2100 кВт-ч. Состав шлака 82-87% TiOj, 2,7-6,5% FeO, 2,8-5,6% SiOj, 2-6% AljOj, [c.591]

    Катодную защиту стальной арматуры в железобетоне применяют для свай, (фундаментов, дорожных сооружений (в т. ч. горизонтальных покрытий) и зданий. Арматура, сваренная, как правило, в единую электрич. систему, корродирует при проникновении в бетон влаги и хлоридов. Последние могуг попадать в результате воздействия морской воды или использования солей-антиобледенителей дорожных сооружений, применения хлоридов для ускорения твердения бетона. Весьма эффективна санация бетона старых зданий с установкой катодной защиты. При этом устанавливают первичные аноды из кремнистого чугуна, платинированных титана или ниобия, фафита, титана с металлооксидным покрытием, к-рые обеспечивают подвод тока к вторичным (распределительным) анодам (титановой сетке с металлооксидным покрытием или электропроводящим неметаллич. покрытием, титановому стержню с покрытием), расположенным вдоль всей пов-сти сооружения и закрытым сверху относительно тонким слоем бетона. Потенциал арматтоы регулируют, изменяя внещ. ток. [c.459]

    При испытаниях твердых смазочных покрытий иа роликах из других, кроме стали ЭИ-347, материалов (титановые, алюминиевые, бронзовые сплары, чугун и т. д.) время истирания слоя определяется также достаточно надежно, так как коэффициент трення таких материалов выше, чем для твердых покрытий с дисульфидом молибдена, и точку в (см. рис. 2) всегда можно определить. [c.319]

    Ильменитовый концентрат обычно также не используется для непосредственного хлорирования. Его подвергают обезжелезива-нию. Наиболее широко для этой цели применяется восстановительная плавка титановых концентратов в электродуговой печи. Конечными продуктами плавки являются чугун и титановый шлак. В зависимости от условий плавки состав шлака колеблется в следующих пределах (в %). [c.548]

    Область применения анализ алюминиевых сплавов, бронз и латуней, цинковых сплавов, титановых и магниевых сплавов, свинца (в том числе сурьмянистого), припоев, низко- и среднелегированных сталей, высоколегированных сталей (хромоникелевых, вольфрамистых, марганцовистых), чугунов (в том числе легированных), никелевых и других жаропрочных сплавов. Относительная погрешность анализа, как правило, находится в диапазоне 1-3 % от измеряемой величины  [c.784]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Если конденсатор работает с использованием неагрессивной пресной воды, покрытия наносят только на поверхности, выступающие в качестве катода, а именно на поверхности концов трубок и трубных досок, а не водяной камеры. Защитные покрытия на поверхности водяной камеры способствуют снижению средней плотности коррозионного тока в целом по всему-объему камеры, но не уменьшает плотность тока в местах, где покрытие выполнено некачественно. Напротив, некачественное покрытие приводит к быстрому углублению раковин на поверхности водяных камер из углеродистой стали или к графитиза-ции камер из чугуна. Катодная защита не может предотвратить эрозию концов трубок. Следует отметить, что в конденсаторах с титановыми трубками при катодной защите наблюдается разрушение трубок с образованием трещин, вызываемых проникновением водорода в кристаллическую решетку титана (появление водорода обусловлено побочным эффектом катодной защиты — электролизом воды). [c.144]

    Наблюдается значительная коррозия тарелок в теплообменниках дистилляции барботажного типа (с многоколпачковыми тарелками). В настоящее время тарелки выполнены из чугуна. Уязвимы для коррозии чугунные (срок службы 2,5—3,5 лет) и титановые детали холодильников газа дистилляции трубчатого типа. Интенсивный коррозионный износ имеет место у корпуса электрофильтра, предназначенного для тонной очистки газа известковых печей от пыли. [c.7]

    HR . Г-ра отпуска 625 — 650° С, твердость после отпуска 68—69 HR . Последующая обработка Б. с. (кроме мелких п о очень точной рабочей кромкой инструментов) состоит в цианировании ir оксидировании, осуществляемых после шлифования и заточки. Из Б. с. умеренной теплостойкости изготовляют сверла, протяжки, концевые фрезы, зенкеры для обработки конструкционных сталей и чугунов с твердостью до 280 НВ. Инстррюнты из В. с. повышенной теплостойкости используют для резания заготовок из жаропрочных сталей, жаропрочных сплавов и нержавеющих сталей с аустенитной структурой и улучшенных конструкционных сталей с твердостью 35—45 ER . Стойкость инструментов из этой стали в два — четыре раза выше, чем из стали умеренной теплостойкости. Инструменты из Б. с. высокой теплостойкости предназначены для резания заготовок из титана сплавов, марганцовистых сталей с аустенитной структурой, а также жаропрочных сталей без охлаждения. Стойкость инструментов из этой стали в 15—30 раз выше стойкости инструментов (сталь марки Р18), используемых для резания заготовок из титановых сплавов, и в 6—10 раз превышает стойкость таких инструментов, применяемых для резания заготовок из марганцовистых и жаропрочных сталей. Б. с. иснользуют также для изготовления подшипников качения, эксплуатируемых в условиях иовыпленного нзноса и нагревающихся до т-ры 400—500° С. Марки и химический состав Б. с. включены в ГОСТ 19265-73. [c.165]

    Вентили изготовляют из серого и кремнистого чугуна, углеродистой и нержавеющей стали, алюминия, титановых сплавов, фарфора, керамики и винипласта. Кроме того, выпускаются чугунные вентили, гуммированные и футерованные свинцом или фаоЛитом. [c.30]

    Накопление более стойкой фазы на поверхности, даже не в виде сплошного слоя, может иногда приводить и к значительному снижению скорости коррозии. Это наблюдается в том случае, если основа сплава может переходить в пассивное состояние вследствие смещения потенциала в положительную сторону под влиянием накопления электроположительной фазы. Так, например, установлено, что в растворах азотной кислоты наличие в железе карбидов и графита способствует более легкой пассивации высоцо-углеродистых сталей и чугуна, по сравнению с чистым железом [7]. Подобным примером могут являться также катодно модифицированные титановые сплавы и нержавеющие стали, которые будут детально рассмотрены ниже. [c.67]

    В настоящее время наиболее широкие области применения иттрия, его соединений, сплавов и лигатур в промышленности следующие производство легированной стали модифицирование чугуна производство сплавов на основе никеля, хрома, молибдена и других металлов — для повышения жаростойкости и жаропрочности выплавка ванадия, тантала, вольфрама и молибдена и сплавов на их основе — для увеличения пластичности производство медных, титановых, алюминиевых и магниевых сплавов атомная энергетика электроника — в качестве катодных материалов (оксиды иттрия), а также для поглощения газов в электровакуумных приборах изготонление квантовых генераторов — лазеров производство тугоплавких и огнеупорных материалов химия —в качестве катализаторов производство стекла и керамики. Рафинирование металлов и сплавов от примесей (кислород, азот, водород и углерод), вызывающих хрупкость сплавов, что особенно важно для тугоплавких хладноломких металлов с объемноцентрированной кубической решеткой, а также примесей, вызывающих хладноломкость (сера, фосфор, мышьяк в [c.195]


Библиография для Чугун титановый: [c.24]   
Смотреть страницы где упоминается термин Чугун титановый: [c.127]    [c.502]    [c.487]    [c.479]    [c.111]    [c.459]    [c.297]    [c.519]    [c.685]    [c.832]    [c.832]    [c.253]    [c.253]    [c.253]    [c.254]    [c.384]    [c.205]    [c.59]    [c.384]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Чугунные

Чугуны



© 2025 chem21.info Реклама на сайте