Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоний-ионы в молекулярных перегруппировка

    Образование иона карбония является необходимым, но недостаточным условием молекулярной перегруппировки. Вторым [c.36]

    Чтобы предотвратить ступенчатое последовательное дегидрирование абсорбированных молекул, ведущее к образованию высоконенасыщенных соединений, а затем и кокса, необходимо присутствие водорода. Образование таких углеродистых отложений вызывает быструю дезактивацию катализатора. Повышенное давление, вероятно, также необходимо для того, чтобы предотвратить образование отложений на катализаторе путем поддержания минимального предельного давления водорода. Возможно, кроме того, что водород играет роль части катализатора и облегчает образование карбоний-ионов [62, 96]. Можно утверждать, что водород выполняет и другую важную роль, поддерживая концентрацию алкена на таком уровне, при котором исключается возможность полимеризации. Следует напомнить, что при условиях, требуемых для скелетной перегруппировки, алкены претерпевают частичную полимеризацию. При гидроизомеризации не образуется сколько-нибудь значительных количеств продуктов большего молекулярного веса, чем исходный углеводород. [c.100]


    Таким образом, для перехода от структуры пинена или камфена к структуре борнеола необходимо осуществить молекулярную перегруппировку, первая стадия которой заключается в превращении молекулы в соответствующий ион карбония. [c.43]

    Образование иона карбония является необходимым, но не достаточным условием молекулярной перегруппировки. Вторым необходимым условием перегруппировки является соответствующее изменение свободной энергии системы (термодинамическое условие). Так, например, образование иона карбония из борнилхлорида имеет место, однако перегруппировки его в гидрохлорид пинена не происходит. [c.43]

    Несмотря на большое число исследований с применением современных методов анализа сырья и конечных продуктов, механизм реакции алкилирования изопарафиновых углеводородов олефинами до настоящего времени полностью не выяснен [13]. Достаточно полное превращение углеводородов при каталитическом алкилировании изопарафинов олефинами объясняется карбоний-ионным механизмом [2. Наиболее достоверным, видимо, является механизм, предложенный Шмерлингом. Согласно его концепции, реакция инициируется взаимодействием следов олефина с протоном (первая стадия). Возникающий ион реагирует с изопарафином, при этом получаются новый ион и парафиновый углеводород, образующийся из олефина (вторая стадия). Затем происходит присоединение этого нового иона ко второй молекуле олефина с образованием иона большего молекулярного веса (третья стадия). На четвертой стадии происходит перегруппировка этого иона за счет миграции заряда вдоль углеродной цепи. Пятая, последняя стадия-взаимодействие этого иона с изопарафином по третичной углерод-водородной связи с образованием конечных продуктов реакции и новых карбоний-ионов, способных продолжить цепь. Алкилирование изобутана бутеном-2 можно представить следующим образом  [c.342]

    Ввиду такого разнообразия возможных направлений не удивительно, что при катионной полимеризации образуется множество продуктов с различным молекулярным весом. Другим осложняющим фактором является возможность скелетной перегруппировки промежуточных карбоний-ионов. Полимеры с высоким молекулярным весом обычно получаются при низких температурах, когда скорость развития цепи намного превышает скорость ее обрыва или скорость побочных процессов, приводящих к переносу заряда. [c.221]


    Разница в действии кислотных и окислительно-восстановительных катализаторов заключается в том, что на первых образовавшийся в первой стадии реакции карбокатион не нуждается в содействии твердой фазы для дальнейших превращений. На окислительных катализаторах перегруппировка нейтральных адсорбированных частиц становится энергетически доступной лишь благодаря вовлечению вакантных уровней катализатора в систему молекулярных орбиталей переходного состояния, ведущего к перераспределению связей в молекуле. Скелетная перегруппировка осуществляется тем легче, чем ближе по электронной структуре реакционный центр реагирующей молекулы в переходном состоянии к строению иона карбония. [c.25]

    Алкилирование протекает по карбоний-ионному механизму. Наиболее достоверен, видимо, вариант, предложенный Шмерлин-гом [16, 201], согласно которому реакция интенсифицируется взаимодействием следов олефина с протоном (первая стадия). Возникающий ион реагирует с изопарафином, при этом образуются новый ион и парафиновый углеводород (вторая стадия). Затем этот новый ион присоединяется ко второй молекуле олефина с образованием иона большей молекулярной массы (третья стадия). На четвертой стадии происходит перегруппировка этого иона вследствие миграции заряда вдоль углеродной цепи. Пятая, последняя стадия — взаимодействие этого иона с изопарафином по третичной углерод-водородной связи с образованием конечных продуктов реакции и новых карбоний-ионов, способных продолжить цепь. Например, алкилирование изобутана бутеном-2 можно представить следующей схемой  [c.300]

    Рассмотренные здесь факты выдвигают проблемы, связанные с попытками Предсказания течения реакции иа осповапии теории карбоний-ионов. Они указывают на то, что не только несколько путей возможно для образования продуктов перегруппировки и диспропорционирования, но что также должна приниматься во внимание возможность перемещения других алкильных групп, кроме метильных, особенно в случае сильно разветвленных карбоний-ионов высокого молекулярного веса (схема XXXIII) [241, 243]. [c.110]

    Молекулярные перегруппировки, типичные для реакций иона карбония, обычно при реакциях отщепления по Гофману не наблюдаются даже в системах неопентильного типа [32]. Однако из иодистого кеоборнилтриметиламмония в присутствии основания в водном растворе этиленгликоля образуется в виде главного продукта реакции камфен, а также некоторое количество три-циклена и борнилена [33]. При сухой перетопке гидроокиси бор-кил- или необорниламмония получается борнилен, причем перегруппировки не происходит [33]. [c.339]

    Димеризация, кодимеризацкя, молекулярные перегруппировки, изомеризация, каталитическая деполимеризация и алкилирование, как стало очевидно в настоящее время, являются тесно связанными процессами. Все эти процессы по-новому раскрываются с помощью представления об ионе карбония . Концепция иона карбония встретила в свое время ожесточенное сопротивление, но сейчас ее следует считать общепринятой. [c.7]

    Геометрия этой частицы подобна геометрии промежуточных соединений, возникающих при перегруппировках в ионах карбония, однако в случае радикала между тремя атомами углерода должны быть распределены три. электрона, а в случае иона карбония— только два. Это положение аналогично обсужденному в дополнении 1, где было показано, что ци-клопропенильный катион, в котором два п-электрона распределены между тремя атомами углерода, значительно более устойчив, чем циклопропенильный радикал с тремя я-электронами. Расчеты энергии промежуточных соединений при ионных и радикальных перегруппировках по методу молекулярных орбиталей также показывают, что случай с тремя электронами гораздо менее выгоден. Однако миграция фенильного радикала может сопровождаться образованием мостикового радикала, для которого нет необходимости предполагать неклассическое строение. Эту перегруп- [c.266]

    Образовавшийся в результате диссоциации молекулярного соединения положительно заряженный ион карбония весьма неустойчив. Это объясняется тем, что один из атомов углерода, входящих в состав иона карбония, окружен не 8, а 6 электронами это обстоятельство не дает оторвать от соседних углеродных атомов соединенные с ними атомы или целые группы атомов вместе с валентными электронами, образующими связь, что приводит к перегруппировке внутри карбониевого иона. [c.99]

    Рассмотрение данных, приведенных в табл. 6, показывает, что скорость 1,2-сдвига атома водорода или метильной группы к вторичному а-оксикарбониевому центру выше, нежели к третичному. Это наблюдение согласуется с предположением о возрастании скорости перегруппировки по мере увеличения заряда в карбониевом центре, поскольку в рамках обычных представлений метильная группа должна снижать заряд за счет положительного индуктивного эффекта и эффекта сверхсопряжения. Хотя точные сведения о скоростях 1,2-сдвигов метильной группы и атома водорода для простейших алифатических ионов карбония, не содержащих а-оксигруппы, по-видимому, отсутствуют, полагают [72], чго и в этих случаях перемещение мигранта к вторичному карбониевому центру должно осуществляться значительно легче, чем к третичному, вследствие большей плотности положительного заряда во вторичном центре. Однако данные спектроскопии ЯМР-С могут рассматриваться как указание на то, что электронный дефицит выше в третичном карбониевом центре [88]. С этим согласуются расчеты, выполненные методом молекулярных орбиталей метильная группа, связанная непосредственно с карбониевым центром, повышает в нем заряд, и тем не менее, стабильность карбониевого иона при этом увеличивается, что обусловлено повышением прочности связи С+—СНз по мере возрастания положительного заряда [91]. С другой стороны, согласно данным [92], замена атома водорода метильной группой понижает заряд в карбониевом центре. Следует учесть также, что в реальных условиях кислотных растворов могут оказаться существенными эффекты растворителя, что в значительной мере обесценивает МО-рас-четы (ср. [93]). Вопрос о знаке электронного эффекта метильной группы, по-видимому, остается открытым (ср. [94]). [c.199]


    Относительные величины реакционной способности, приписанные трем типам углерод-водородных связей для каталитического крекинга изомеров гексана при 550° будут П = 1, В — 2 и Т — 20. Таким образом, отмеченное выше замедление крекинга четвертичными структурами в действительности является следствием отсутствия третичных углерод-водородных связей, как это имеет место в случае 2,2-диметилбутана. Повидимому, достаточно точное предсказание относительной глубины крекинга изомеров более высокомолекулярных парафинов может быть сделано на основании данных, полученных с изомерами гексана. Иными словами, с увеличением общего числа углерод-водородных связей должна иметь место большая глубина крекинга. Хорошо известно, что с повышением молекулярного веса легкость крекинга также увеличивается, но в случае соединений с большим молекулярным весом труднее провести различие между крекингом и другими реакциями, например образованием ароматических соединений перераспределением водорода и т. п. Кроме того, имеется ряд известных аномалий, значительно усложняющих картину, и даже в случае простого углеводорода, например 3-метилпентана, оказывается весьма трудным объяснить образование больших количеств пропилена и пропана. Отмечено [6] почти полное отсутствие других изомеров гексана в получающемся продукте, указывающее на то, что во время реакции крекинга должна происходить перегруппировка как составная часть реакции крекинга. Иначе говоря, образование связи углерод — катализатор, вызывающее скелетную изомеризацию, одновременно вызывает также и реакцию крекинга, в результате чего изомеризо-ванный парафин с тем же числом атомов углерода как исходный присутствует только в виде иона карбония. [c.170]


Смотреть страницы где упоминается термин Карбоний-ионы в молекулярных перегруппировка: [c.15]    [c.661]    [c.15]    [c.242]    [c.91]   
Органическая химия (1964) -- [ c.242 , c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоний-ионы



© 2025 chem21.info Реклама на сайте