Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тройная связь электрофильного присоединения

    Из сопоставления энергий ординарной (350 кДж/моль), двойной (610 кДж/моль) и тройной (840 кДж/моль) связей следует, что в соединениях ацетиленового ряда энергия тройной связи на 210 кДж/моль меньше, чем сумма энергий трех ординарных, а я-электроны, как и в соединениях этиленового ряда, обладают высокой поляризуемостью. Поэтому для соединений ацетиленового ряда характерно большинство из рассмотренных в разд. 1.1 реакций присоединения электрофильных реагентов. Однако во всех этих реакциях соединения ацетиленового ряда менее реакционноспособны, чем соответствующие соединения этиленового ряда. [c.51]


    Механизм электрофильного присоединения по двойным и тройным углерод-углеродным связям включает следующие стадии. [c.113]

    Практически все известные для этиленовых соединений реакции электрофильного присоединения можно провести и с ацетиленовыми углеводородами и их производными. Однако вследствие большей электроотрицательности 5 г7-гибридных атомов углерода ацетилена я-электроны тройной связи более жестко связаны с ядрами, чем в этилене. На это, в частности, указывают значения потенциалов ионизации двойной (10,50 эВ) и тройной (11,40 эВ) связей. Электро-нодонорные свойства тройной связи ниже, чем у двойной, поэтому ацетиленовые соединения вступают в реакции с электрофилами примерно в 10 раз труднее, чем близкие нм по строению этиленовые. Для ускорения этих реакций рекомендуется применение катализаторов. Наиболее часто используются апротонные кислоты (галоге-ниды алюминия, бора, меди н ртути)  [c.118]

    Высокая электроотрицательность р-атома углерода ацетилена делает возможным при взаимодействии со спиртами и тиоспиртами ( 5Н) в щелочной среде чистое нуклеофильное присоединение без предварительной электрофильной активации тройной связи  [c.72]

    Кажется очевидным, что электроноакцепторные группы способствуют протеканию нуклеофильного присоединения и ингибируют реакции электрофильного присоединения в результате того, что они понижают электронную плотность двойной связи. Это, ио-видпмому, верно, хотя аналогичные рассуждения не всегда оказываются справедливыми при сравнении субстратов с двойными и с тройными связями [67]. Между атомами углерода тройной связи концентрация электронов выше, чем между атомами углерода двойной связи, и тем не менее тройные связи менее склонны реагировать но электрофильному механизму и легче вступают в реакции нуклеофильного присоединения, чем двойные связи [68]. Это утверждение не носит универсального характера, но справедливо в большинстве случаев. При бромировании соединений, содержащих одновременно двойные и тройные связи (несопряженные), бром (электрофильный реагент) всегда присоединяется к двойной связи [69]. В сущности все реагенты, способные образовывать мостиковые интермедиаты типа 2, с двойными связями взаимодействуют быстрее, чем с тройными. В то же время присоединение электрофильного Н+ (кислотно-катализируемая гидратация, реакция 15-2 присоединение галогеноводородов, реакция 15-1) идет примерно с одинаковыми скоростями в случае алкенов и соответствующих алкинов [70]. [c.150]


    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Для предельных углеводородов характерна устойчивость к различным реагентам, типичны для них реакции замещения, особенно радикального — 5 , непредельные углеводороды значительно более реакционноспособны, для них характерны реакции присоединения, главным образом электрофильного реакции окисления и полимеризации, а для ацетиленовых, кроме того, реакции замещения водорода при тройной связи на металл. В последней реакции проявляются некоторые кислотные свойства ацетилена, обусловленные больщей электроотрицательностью (выражающейся цифрой 3,1) атома углерода в состоянии <р-гибридизации по сравнению с и -гибридизацией (электроотрицательность соответственно 2,8 и 2,5), что вызывает сдвиг электронных плотностей в молекуле  [c.25]

    Реакции электрофильного присоединения к тройной связи [c.2319]

    Винил-катионы образуются в результате присоединения электрофильной частицы к угле-род-углеродной тройной связи. В общем они менее устойчивы, чем первичные алкильные карбокатионы. [c.380]

    Присоединение электрофильных агентов К тройной связи [c.156]

    Так же как химия алкенов является химией двойной углерод-углеродной связи, так и химия алкинов — по существу химия тройной углерод-углеродной связи. Алкины, как и алкены, вступают в реакцию электрофильного присоединения, поскольку в них имеются довольно доступные для атаки я-электроны. По непонятным причинам тройная углерод-углеродная связь менее реакционноспособна по отношению к электрофильным реагентам, чем двойная. [c.234]

    Для тройной связи с—с в алкинах так же, как и для двойной углерод-углеродной связи в алкенах, характерны реакции электрофильного присоединения. Однако алкины вступают в них труднее, чем алкены. Это можно объяснить тем, что углерод-углеродные связи этинильной группы имеют больший 5-характер, и поэтому труднее атакуются электрофилом. Кроме того, образование промежуточного катиона из алкена [c.108]

    Химические свойства. Тройная связь образуется двумя атомами углерода в вр-гибридном состоянии. Две о-связи расположены под углом 180°, а две я-связи расположены во взаимно перпендикулярных областях (см. 3). Наличие л-связей обусловливает способность алкинов вступать в реакции электрофильного присоединения. Однако эти реакции для алкинов протекают медленнее, чем для алкенов. Это объясняется тем, что л-электронная плотность тройной связи расположена более компактно, чем в алкенах, и поэтому менее доступна для взаимодействия с различными реагентами. [c.323]

    Электрофильным реагентом здесь является катион +Н ООССНз. Известны реакции присоединения солей ртути к двойным и тройным связям (см. гл. И. 4.2.г)  [c.257]

    Винил-катион — катион, образующийся в результате присоединения электрофильной частицы к углерод-углеродной тройной связи. Атом углерода, на котором сосредоточен положительный заряд, является 5р-гибридизованным  [c.60]

    Хотя электрофильные реакции присоединения в ацетиленовом ряду изучены хуже, чем в этиленовом, известно, что тройные связи углерод — углерод могут реагировать таким же образом, как и двойные. Ацетилен, например, легко присоединяет молекулу брома (а) и может также образовывать галоидированные в р-положении а, ненасыщенные кетоны путем конденсации с хлоран-гидридами кислот в присутствии хлористого алюминия (б). [c.269]

    Электрофильное присоединение галогенов по тройной связи идет [c.315]

    Подводя итог обсуждению реакций присоединения по тройной связи, легко видеть, что как электрофильные, так и нуклеофильные реагенты присоединяются, например к ацетилену, с образованием соединений общей формулы СН2=СН-Х. Такие реакции носят название реакции винилирования . [c.323]

    Простые эфиры енолов более чувствительны к электрофильной атаке, чем тройные связи, гюэтому присоединение спиртов к этим эфирам может также катализироваться кислотами. Одно из часто использующихся применений этой реакции — защита ОН-групп первичных и вторичных спиртов и фенолов с помощью дигидропирана 31 [149]. Образующийся при таком взаи- [c.167]


    Промшыленные и лабораторные методы полуения алкинов. Химические свойства реакции электрофильного и нуклеофильного присоединения к тройной связи. Понятие о явлении таутомерии. Реакции замещения "кислого" атома водорода при тройной связи. Промышленные синтезы на основе ацетилена, [c.189]

    Особенности строения и гибридизация. Реавддя электрофильно. и и нуклеофильного присоединения к тройной связи. Реакции замещения кислого атома водорода, при тройной связи, [c.194]

    Скорость реакций электрофильного присоединения к алкенам и алкинам в соответствии с предложенной схемой механизма, как правило, описывается кинетическим уравнением второго порядка Электронодонориые заместители у кратных связей облегчают образование я- и а-комплексов и, следовательно, увеличивают скорость электрофильного присоединения и по двойным, и по тройным связям непредельных соединений, электроноакцепторные заместители снижают скорость присоединения. Приведенные в табл. 4 константы скорости реакций присоединения хлора к производным стирола хорошо иллюстрируют эту зависимость  [c.114]

    При присоединении несимметричных реагентов к несимметричным субстратам возникает вопрос с какой стороны двойной или тройной связи присоединится тот или иной фрагмент реагента В случае электрофильной атаки ответ на этот воирос дает правило Марковникова положительно заряженная часть реагента присоединяется к тому атому двойной или тройной связи, с которым связано больше атомов водорода [79]. Для такой региоселективности был предложен ряд объяснений, паиболее вероятное из которых заключается в том, что Y+ присоединяется так, чтобы получился наиболее стабильный карбокатион. Так, для алкильной группы вторичные карбокатионы более стабильны, чем первичные  [c.152]

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]

    Химия алкинов - химия тройной связи, активной в реакциях 1Ц)исоединения. Хотя мы отмечали, что тройная связь срочнее, чем простая или двойная, но это - суммарная прочность а- и двух те-связей. А чтобы порвать одну из тсч вязей, надо затратить меньше энергии. Кроме того, 7г-электроны доступны для атаки злектрофилами. Однако тройная связь мшее активно участвует в реакциях электрофильного присоединения (А , чем двойная к тому же, поскольку яд)а углеродов щ)и тройной связи более доступны для атаки нуклеофильных реагентов, алкины вступают и в реакции нуклеофильного присоединения (А ), что совершенно не характерно для олефинов. [c.122]

    Единичная я-связь в алкенах, алкинах и алленах относится к числу наиболее химически активных реакционных центров ненасыщенных углеводородов. Однако она проявляет свое химическое сродство только к тем реагентам, которые склонны сильно поляризовать я-связь в сторону одного из углеродных атомов и иметь достаточное химическое сродство к а- или я-электронной паре, т. е. обладать электрофильными свойствами. В разделе о механизмах реакций электрофильного присоединения по двойной связи показано, что эти Ас1Е-реакции характерны для всех органических и неорганических гидридов, имеющих выраженный кислотный характер. Из соединений, способных присоединяться по двойной (тройной) связи, исключаются [c.346]

    Для алкинов и циклоалкинов, как и для соединений с двойными связями С=С, типичны реакции присоединения. Однако из-за повышенной электроотрицательности 5р-гибридизованных атомов углерода и укороченности связей поляризуемость я-электронов тройной связи С=С уменьшена. Вместе с тем положительно заряженные ядра атомов углерода с внешней стороны экранированы в меньшей степени. В соответствии с этим тройная связь С=С по сравнению с двойной связью С—С менее реакционноспособна в отношении электрофильных агентов. С другой стороны, в ряду алкинов легче протекает нуклеофильное присоединение. Наконец, благодаря разобранным выше факторам алкины с концевой этинильной группой обладают слабой С—Н-кислотностью (ацетилен имеет р/Са =20). [c.252]

    Химические свойства алкенолов и алкинолов определяются наличием гидроксильной группы и двойных или тройных связей. Для этих соединений характерны обычные свойства алканолов, присутствие кратных связей не имеет принципиального значения. Однако надо помнить, что под действием сильных электрофильных реагентов в реакцию может вступать как гидроксильная группа, так и двойная или тройная связь. Двойные и тройные связи вступают в реакции присоединения, полимеризации и окисления. [c.298]

    К числу общих методов синтеза изоксазола и пиразола относится 1,3-диполярное присоединение нитрилоксидов (часто использующихся в момент выделения при дегидрогалоидировании хлоридов гидроксамовых кислот, например XV) или диазоалканов к ацетилену, тройная связь которого, как правило, активирована наличием электроноакцепторных заместителей. Главной особенностью подобного типа конденсаций является то, что нитрилоксиды и диазоалканы можно рассматривать как диполярные (амбидент-ные) соединения, которые проявляют в положениях 1 и 3, как электрофильную, так и нуклеофильную реакционную способность. Например, нитрилоксид XVI можно рассматривать как 1,3-диполярное [c.170]

    Так как энергия я-связи в алкенах равна 272 кДж/моль, то формальной точки зрения алкины должны быть более реак-вдионноспособны в реакциях присоединения. Но заметное укорачивание тройной связи (0,120 нм) по сравнению с двойной (0,134 нм) приводит к заметному уменьшению поляризуемости и, как следствие, к понижению реакционной способности в отношении электрофильных агентов (например, Haig, HHal). Присоединение нуклеофильных агентов, напротив, протекает легче, чем к алкенам. [c.183]


Смотреть страницы где упоминается термин Тройная связь электрофильного присоединения: [c.522]    [c.146]    [c.122]    [c.71]    [c.116]    [c.143]    [c.151]    [c.171]    [c.194]    [c.219]    [c.277]    [c.509]    [c.496]    [c.145]    [c.150]    [c.153]   
Курс физической органический химии (1972) -- [ c.198 , c.285 , c.286 , c.323 , c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Присоединение электрофильное

Связь тройная

Электрофильность

Электрофильные агенты, присоединение к тройной связи



© 2025 chem21.info Реклама на сайте