Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медицинские части животных

    Широкое применение в медицине находят пленочные формы лекарственных препаратов на полимерной основе. Разработке новых лекарственных форм посвящена часть медицинской науки - фармация, интенсивно развивающаяся в последние годы благодаря использованию технологии переработки в пленки и листы композиций высокомолекулярных соединений и лекарственных веществ, микро- и макрокапсулирования лекарств, конструирования разнообразных пленочных устройств для введения лекарств в организм человека или животного. Природные высокомолекулярные соединения и синтетические полимеры используют в новых фармацевтических средствах для капсулирования лекарственных веществ в целях защиты от атмосферных воздействий при хранении и регулирования скорости введения в организм при применении. Приемы капсулирования веществ, используемые в фармакологии, разнообразны и, в частности, включают те, которые рассмотрены нами в гл. 1 и 2. Необходимость защиты лекарственных веществ от окружающей среды кроме общих причин обусловлена спецификой их использования. В организме человека при перо-ральном применении лекарственное вещество проходит зоны с различными кислотностью, ферментативной активностью и концентрацией солей, что может привести к преждевременному разложению или значительному снижению фармакологического эффекта от лекарственного препарата. Стремление разработчиков новых лекарственных форм уменьшить скорость растворения лекарственного вещества обусловлено необходимостью создания постоянной оптимальной концентрации вещества в крови или других жидких средах организма и увеличения интервалов времени между приемами препаратов до суток или величины, кратной суткам. Многократный прием лекарственных веществ в течение суток без регулятора скорости растворения неудобен больным и может привести к возникновению чрезмерных концентраций лекарственного вещества, что связано с риском появления побочных явлений. [c.161]


    Основным направлением в получении пиридинкарбоновых кислот следует считать различные методы прямого окисления азотсодержащих гетероциклических соединений. Исследование этих процессов обусловлено возможностью практического использования кислородсодержащих производных пиридина, которые отличаются, прежде всего, значительной физиологической ак 1ивностью. По этой причине карбонильные и карбоксильные производные пиридина нашли широкое применение в медицинской практике [1]. Первое место в этом отношении принадлежит никотиновой кислоте, которая является составной частью большого числа лекарственных препаратов кордиамина, цезола н других. Амид никотиновой кислоты (витамин РР) предупреждает и излечивает пеллагру, укрепляет нервную систему, улучшает углеводный и белковый обмен [2—4]. Суточная потребность человека в витамине РР составляет 20—30 мг. В больших количествах никотиновая кислота требуется для витаминизацг1и пищевых продуктов и кормов животных [2, 5]. Изоникотиновая кислота и ее производные являются основой противотуберкулезных препаратов [3, 6]. [c.3]

    D-глюкоза — наиболее распространенная альдогексоза, встречающаяся как в свободном виде в виноградном соке и многих сладких плодах, так и в виде сложных сахаров — дисахаридов (сахароза, лактоза) и особенно часто — в виде полисахаридов растительного происхождения (крахмал, клетчатка) и животного происхождения (гликоген). В промышленности глюкозу получают гидролизом крахмала с разбавленной серной кислотой. Серную кислоту потом нейтрализуют мелом и отфильтровывают в виде труднорастворимого сульфата кальция. Упаренный сироп называют патокой. Частично патока идет непосредственно в кондитерское производство, частично из нее получают кристаллизованную очищенную глюкозу для медицинских и технических целей. [c.207]

    Коллоиды в природе и в технике. Коллоидные системы очень распространены в природе. Молоко, кровь, белки, крахмал, большая часть тканей растительных и животных организмов находятся в коллоидном состоянии. Работа многих отраслей промышленности связана с коллоидными системами пищевой, медицинской, текстильной, кожевенной, лако-красочной, керамической промышленности, производство искусственного волокна, пластических масс, смазочных материалов и т. д. [c.162]

    Лечить болезни с помощью различных химических соединений люди пытались во все периоды развития цивилизации. До конца XIX века применяли в основном вещества растительного или животного происхождения. В большинстве случаев использовали смеси, часто неизвестного состава. Успехи органической химии позволили широко внедрить в медицинскую практику индивидуальные синтетические препараты известной структуры, которые почти полностью вытеснили природные. С синтетическими лекарствами справедливо связывают огромные успехи лекарственной терапии. Почти все синтетические лекарственные вещества, применяемые в медицине, являются низкомолекулярными соединениями, в то время как многие лекарственные вещества природного происхождения представляют собой биополимеры — белки, пептиды или полисахариды. [c.7]


    К определению видов животных н растений нередко приходится прибегать врачу. Например, чтобы назначить лечение необходимо знать видовую принадлежность паразита, вызвавшего заболевание, а при отравлении нужно точно установить, какое растение явилось его источником. Определение видового состава насекомых и клещей необходимо при эпидемиологической оценке местности, а также иногда при судебно-медицинской экспертизе. Гигиеническая оценка источников водоснабжения часто требует установления видового состава водной флоры и фауны и т. д. [c.286]

    Уже со времен глубокой древности люди были знакомы со многими биохимическими процессами растений, лежащими в основе различных производств хлебопечения, виноделия, выделки кож и т. д. Стремление повысить урожайность полей и использовать различные растения для приготовления пищи, лекарств, красок, тканей, дубителей, пряностей приводило к необходимости изучать составные части растений и влияние различных веществ и факторов на их рост и развитие. Обособление и развитие биохимии как самостоятельной научной дисциплины произошло только в XIX веке. До этого времени сведения о составе организмов и происходящих в них процессах были весьма ограничены и случайны. Биохимия развивалась на основе успехов органической химии, расширении круга изучаемых ею природных веществ, В настоящее время биохимия представляет собой весьма разветвленную область знаний, охватывающую целый ряд разделов, выросших в самостоятельные дисциплины биохимия растений, биохимия микроорганизмов, биохимия животных и медицинская биохимия, энзимология, витаминология, техническая биохимия и т. д. [c.3]

    На долю инфракрасных лучей приходится около 50% всей доходящей до З мли солнечной энергии, и они имеют основное значение для жизни растений. Лучи этц почти не задерживаются туманом, что позволяет, в частности, фотографироват земную поверхность сквозь облачный покров (рис. 11-11). Инфракрасные лучи испускаются всяким нагретым предметом, в том числе каждым теплокровным животным (характерные длины волн порядка 0,01 мм). Исследованием, проведенным на гремучих змеях, было выяснено, что они имеют в передней части головы специальные тепло-чузстнительные органы и при охоте руководствуются главным образом тепловым излучением своих жертв. Высокочувствительные приемники в инфракрасном диапазоне улавливают разности температур до тысячных. долей градуса. Такое тепловидение позволяет решать ряд важных задач — от медицинской диагностики некоторых заболеваний др точного определения местонахождения самолетов в полной темноте. [c.43]

    ЛДло — доза вещества, вызывающая гибель 50% подопытных животных ЛДюо — доза вещества, вызывающая гибель 100% подопытных животных лек.— лекарстиониый М — молярность раствора м. б.— может быть, могут быгь магн.— магнитный макс.— максимальный мае. ч.— массовая часть, массовое число матем.— математический мед.— медицинский межмол.— межмолекулярный меламино-формальд.— мела-мино-формальдегидный мех.— механический миним. — минимальный млн.— миллион млрд. — миллиард ММР — молекулярно-массовое распределение мн,— многие [c.6]

    Первая задача химиков, изучающих природные соединения состоит в выделении чистых веществ из сложных смесей, почти всегда получаемых из живых организмов. Эта задача иногда тривиальна, но иногда достигает фантастической сложности так, сердцевина некоторых кедровых деревьев содержит чистые кристаллы карбоновой кислоты с одиннадцатью углеродными атомами, но в то же время некоторые железы животных содержат менее одной миллионной части медицински важных гормонов, смешанных не только с кровью, тканью, клеточной жидкостью и белками, но и с множеством других гормонов, почти идентичных по химической структуре и физическим свойствам. Для решения таких проблем химик должен применять весь арсенал методов разделения, включая перегонку, кристаллизацию, электрофорез, хроматографию и многие другие, а также ему необходимо разработать методы, позволяющие контролировать присутствие нужного вещества, для того чтобы устанавливать, обогащена ли им фракция. [c.166]

    Животные жиры (например, свиное или говяжье сало) отделяют от тканей посредством их обработки водой или паром, под давлением или без давления, в луженых котлах. При этом клетки ткани разрываются, и расплавленный жир всплывает кверху в виде маслянистого слоя, который может быть отделен. Растительные масла получают обычно отжиманием измельченных плодов или семян под гидравлическим прессом. При отжимании на холоду получают масло первого отжима или холодного прессования если же отжимание производят при нагревании, получается масло горячего прессования. При горячем отжимании масла обычно подвергают обесцвечиванию, поэтому они непригодны для медицинских и пищевых пеле1 т. Лучшие сорта оливкового масла, отжимаемые без нагревагитл, имеют медицинское и пищевое применение, а те сорта, которые получают экстракцией и горячим прессованием, употребляются б мыловарении и т. п. Другой способ получения растительных масел состоит в экстракции измельченных семян и других частей растения холодными или горячими органическими растворптеля га, например петролейным эфиром и.ии сероуглеродом растворитель затем регенерируют отгонкой от экстракта. Такая экстракция является более эффективной, чем отжимание, и к ней обычно прибегают для извлечения масла (10% и более), остающегося в жмыхе после прессования. Масла, получаемые экстракцией, непригодны для пищевых и медицинских целей, так как они сохраняют запах растворителя. [c.310]


    От органической химии с течением времени постепенно отделяется одно из важнейших ее направлений — б иологическая химия. Она изучает химические превращения веществ в организме животных и растений. В своем развитии она вначале выполняла чисто служебные функции, как подсобная дисциплина медицинских наук в областях химии животного организма, или как составная часть агрономической химии и химии пищевых веществ растений. Как самостоятельная наука, обладающая собственными методами, задачами и основными принципами, биологическая химия сложилась только в последнее время. [c.12]

    Еще раньше, в 1929 г. Бутенант и Дойзи выделили первый женский эстрогенный гормон — эстрон. Он содержится в большом количестве в моче беременных женщин п самок, но также и в моче самцов, например жеребцов, откуда и получается. Этому не следует удивляться, так как организм освобождается таким путем от ненужного ему гормона. Эстрон лишь один из серии выделенных в настоящее время родственных по действию и структуре эстрогенных гормонов, вызывающих состояние течки у животных и обеспечивающих первую фазу месячного цикла у женщин. Еще более сильно действующим эстрогеном является эстрадиол, выделенный из яичников животных. Индикатором действия этого рода гормонов служит кастрированная самка мыши, у которой введение некоторого минимального количества гормона ( 1 мышиная единица ) вызывает признаки течки. Однако для организма женщин и самок характерна еще и вторая группа гормонов, так называемого лутоидиого действия. Эти гормоны начинают вырабатываться желтым телом , развивающимся в яичнике после совершившегося в первой фазе месячного цикла (женщина) — выделения яйца (овуляции). Примером таких гормонов служит лутеостерон. Назначение этого рода гормонов — подготовка организма к беременности, в частности подготовка матки к восприятию и развитию онлодотворенного яйца. Интересно, что эстрогенные гормоны (или эстрогенно действующие вещества) широко распространены в природе. Они найДены в цветах и плодах многих растений. Эстрогены оказывают стимулирующее действие на рост и цветение растений. Возможно, что навоз обязан частью своего полезного действия на полях всегда присутствующим в нем эстрогенам. В настоящее время эти гормоны и некоторые их синтетические физиологически активные аналоги служат важными медицинскими средствами. Так, эстрон и тестостерон применяются как тонизирующие и как лечебные препараты при недостаточной продуктивности гонад, болезненной или возрастной. В некоторых случаях они эффективны против рака (предстательной и грудных желез и др.). Лутеостерон предупреждает выкидыши и обеспечивает нормальное тече- [c.611]

    Неограниченное применение находят радиоактивные изотопы в медицинских исследованиях, диагностике и лечении болезней. В ряде случаев результаты исследований очень быстро претворялись в жизнь. Одним из примеров применения меченых атомов в исследовании и диагностике может слун<ить использование радиоактивного Ка . Этим изотопам метят хлорид натрия, который затем вводят в кровь животного или человека. Излучение измеряют в различных местах кровеносной системы и на этом основании делают выводы о скорости циркуляции крови в различных частях тела. Если такие исследования проводить на больном со сломанной в результате несчастного случая рукой или ногой, то можно определить скорость циркуляции крови в поврежденном органе и уже на основании этого решить вопрос о необходимости ампутации и о точном месте ампутации, если она неиз- [c.56]

    Одним из важнейших гормонов передней доли гипофиза является адренокортикотропный гормон, сокращенно АКТГ, получивший широкое применение в медицинской практике и в физиологическом эксперименте. Как указывает название, АКТГ влияет на функции надпочечников и, как это установлено, на их кору. Гипофизэктомия вызывает у животных резкое уменьшение размера надпочечников за счет уменьшения их корковой части. Инъекции АКТГ предохраняют гипофизэктомированных животных от уменьшения корковой части надпочечников и связанных с этим расстройств. [c.158]

    В целях получения важной информации для геохимических и космохимических исследований всесторонне были проанализированы материалы земного (атмосфера, почвы, твердые вещества, минералы, руды, речная, озерная и морская воды) и космического (метеориты, твердые вещества, лунный грунт) происхождения с целью определения микроэлементов. Роль микроэлементов в биологических системах очень сложна. У растений и животных существует множество необходимых, вредных и токсичных микроэлементов. Оптимальные области концентраций микроэлементов, наиболее необходимых растениям и животным, достаточно узкие. Недостаток микроэлементов вызывает раз-Л1гчные заболевания, а их избыточные количества-токсичны. Поэтому при проведении биологических, агрохимических и медицинских исследований, связанных с проблемами окружающей среды, часто необходимо определять микроэлементы в атмосфере, питьевой воде, твердых веществах, растениях, пище, крови человека и животных, моче и биологических тканях. Микроэлементы имеют очень больщое значение в физических науках и промышленности. Загрязнения микроэлементами металлов высокой чистоты, полупроводниковых материалов и стекол оказывает существенное влияние на электрические, магнитные, механические, ядерные, оптические свойства материалов и их химическую стойкость. Микроэлементы, содержащиеся в сырьевых материалах (нефть, руды), могут отрицательно влиять на технологические процессы, например, отравлять катализаторы, снижать эффективность производства. Промышленные газовые выбросы и сточные воды, содержащие некоторые микроэлементы, являются источниками загрязнения окружающей среды. Микроэлементы также играют больщую роль в криминалистике и археологии. [c.13]

    Большое число антибиотических веществ, образуемых различными группами организмов, являются продуктами жизнедеятельности собственно бактерий. Однако лишь немногие из них нашли практическое применение, так как большинство бактериальных антибиотиков токсично для макроорганизмов. Часть этих антибиотиков (грамицидин С, полимиксины, бацитрацины и др.) используется в медицинской практике, другие (субтилин, низины) нашли применение в нишевой и консервной промышленности. Они предохраняют от порчи мясные, рыбные, молочные и другие скоропортящиеся продукты. Некоторые из бактериальных антибиотиков, например бацитрацины, употребляют в сельском хозяйстве как добавки к корму домашних животных. [c.184]

    Подобные копии применяются для экспрессии в бактериях важных с медицинской точки зрения белков человека и животных, таких, как инсулин, ренин, гормон роста и др. В данном случае фрагменты генома нельзя использовать. Это связано с тем, что у эукариот отдельные части некоторых структурных генов разобщены кодирующие последовательности (экзоны) чередуются с некодирующими вставочными последовательностями (нитроны). Ген целиком транскрибируется с обра.зованием первичного транскрипта РНК, затем транскрипты нитронов выщепляются, а последовательности соответствующие экзонам, сши- [c.136]

    Помимо суперпродукции, повышенной гидро-фобности и неправильного образования дисульфидных связей формированию водонерастворимых конгломератов чужеродных белков в Е. со// способствуют и другие факторы, которые пока точно не известны. Однако совершенно ясно, что в нерастворимых включениях белок, по крайней мере частично, денатурирован, а для его перевода в растворимую форму требуется полная денатурация с разрушением дисульфидных связей. Для растворения белковых телец включения их обрабатывают в жестких денатурирующих условиях додецилсульфатом натрия, гуа-нидингидрохлоридом, мочевиной и т. п. с добавлением 2-меркаптоэтанола, дитиотреитола и др. Заключительным этапом очистки таких белков является их ренатурация, необходимая для получения функционально активного продукта. Удельная активность ре-натурированного генно-инженерного белка при этом часто не достигает уровня, свойственного природной форме. Получаемый таким образом препарат содержит балласт в виде измененных форм целевого белка, который может вызывать негативные эффекты при попадании в организм человека или животных. Поэтому при конструировании бактериальных штаммов — продуцентов эукариотических белков медицинского назначения необходимо стремиться к получению целевого белка в растворимом виде и не допускать его преципитации. Наиболее просто добиться высокого уровня продукции эукариотического белка без формирования телец включения можно, создавая штаммы, секретирующие этот белок в окружающую среду. Продуктивен также подход с использованием экспрессирующих векторов широкого круга хозяев и последовательным введением полученных на их основе гибридных плазмид в разные бактерии для поиска оптимальной пары. [c.284]


Смотреть страницы где упоминается термин Медицинские части животных: [c.6]    [c.11]    [c.274]    [c.334]    [c.9]    [c.12]    [c.35]    [c.34]    [c.6]   
Сочинения Том 19 (1950) -- [ c.44 , c.438 ]




ПОИСК







© 2025 chem21.info Реклама на сайте