Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии стенки клетки

    Цитоплазма бактерий. Все содержимое клетки, ограниченное клеточной стенкой, называется протопластом. Протопласт состоит пз цитоплазматической мембраны и живого вещества клетки — цитоплазмы, или протоплазмы. Цитоплазма бактерий является бесцветной, прозрачной, слегка вязкой. [c.249]

    Полисахаридные цепи гликопептида стенки химически весьма устойчивы. Тем не менее их гидролиз легко протекает под действием специфического фермента — лизоцима, весьма распространенного в живых организмах. Обработка многих бактерий лизоцимом приводит к разрушению стенки и в обычных условиях к гибели бактериальной клетки (из-за способности лизировать, т. е. растворять бактериальные клетки, фермент и получил свое название). Ряд слизистых выделений животных организмов, таких, как слезы или слюна, содержит лизоцим, что обусловливает их защитный эффект против вторжения инфекции. [c.151]


    Этот вопрос остается в целом неразрешетшым, хотя недавно было выдвинуто нредположение [14, 15], что клетки грамотрица-тельных бактерий (в частности, Е. соИ) лизируются иод действием лизоцима только ири создании условий для осмотического шока бактерий, когда суспензию бактериальных клеток резко разбавляют в присутствии фермента. При этом лизоцим захватывается потоком воды через норы во внешней мембране внутрь клетки, и скорость лизиса возрастает в 50—100 раз. Не вдаваясь в детали предлагаемой гипотезы, можно тем не менее заключить, что сложность физического доступа лизоцима к своему специфическому субстрату — пеитидогликаиу — в составе бактериальной клеточной стенки может в известной стеиени мешать оценке действительной реакционной сиособности пептидогликана и выявлению истинной субстратной специфичности фермента. Этот фактор необходимо принимать во внимание при изучении кинетики и механизмов бактериолитического действия ферментов. [c.145]

    Оболочка [растительной клетки состоит из нескольких слоев, различающихся по химическому составу. Соответственно этому, разрушение ее происходит постепенно, и отдельные слои атакуются с различной интенсивностью специфическими грибами и бактериями. В клетке живых растений вначале имеется первичная целлюлозная стенка, потом она утолщается вследствие образования вторичной стенки. Вторичная стенка состоит из трех различающихся слоев (рис. 24 Александров, 1954 Яценко-Хмелевский, [c.102]

    Биосинтез гликопептида стенки проходит через несколько этапов, включаюш их образование полисахаридных цепей, нараш ивание на них пептидных разветвлений и в заключение — сшивание этих пептидов пентагли-циновыми мостиками. Ряд антибиотиков блокирует определенные стадии этого процесса, что в итоге приводит к нарушению биосинтеза стенки и, следовательно, к появлению нежизнеспособных бактериальных клеток после деления. Так, бацитрацин и ванкомицин ингибируют биосинтез полисахаридных цепей гликопептида, а пенициллин угнетает заключительный этап — образование пентаглициновых сшивок. Гликопептид рассматриваемого типа — обитая основа клеточной стенки самых разнообразных бактерий в то же время подобные структуры отсутствуют в клетках животных организмов. Отсюда становятся понятными причины широты антибактериального спектра таких антибиотиков, с одной стороны, и их исключительно низкая токсичность для животных, с другой. [c.151]

    Подобно бактериям, клетки высших растений и животных часто покрыты внеклеточным материалом. Так, растительные клетки имеют жесткую стенку, содержащую в большом количестве целлюлозу и другие полимерные углеводы. Клетки, расположенные на наружных поверхностях растений, бывают покрыты восковым слоем. Клетки животных снаружи обычно защищены гликопротеидами — комплексами углеводов со специфическими белками клеточной поверхности. Пространство между клетками заполнено такими цементирующими веществами , как пектины у растений и гиалуроновая кислота у животных. Нерастворимые белки —коллаген и эластин — секретируются клетками соединительной ткани. Клетки, лежащие на поверхности (эпителиальные или эндотелиальные), нередко граничат с другой стороны с тонкой, содержащей коллаген базальной мембраной (рис. 1-3). Часто в результате совместного действия клеток различного типа происходит отложение неорганических соединений — фосфата кальция (в костях), карбоната кальция (скорлупа яиц и спикулы губок), окиси кремния (раковины Диатомовых водорослей) и т. п. Таким образом, обмен веществ в значительной мере протекает вне клеток. [c.37]


    Как происходит заражение бактерии Т-четным фагом Процесс начинается с присоединения нитей отростка к специфическим рецепторным участкам на поверхности бактерии. Это вызывает ряд конформационных изменений в нитях, базальной пластинке и чехле. При этом из базальной пластинки высвобождается лизоцим и разрушает стенку бактерии. Сокращение чехла начинается с базальной пластинки и далее распространяется к основанию. После того как стержень-проникнет в бактерию, ДНК быстро впрыскивается в клетку хозяина. [c.329]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    Иногда фенолы находятся в высших растениях в свободном состоянии, однако обычно в таком виде они присутствуют либо в тканях накопления (семена и ягоды), либо в сухих или мертвых тканях (например, сердцевина деревьев). Можно не принимать во внимание более ранние сообщения о наличии свободных фенолов в тканях листьев и цветков, так как в то время не принималось достаточных мер предосторожности для исключения ферментативного или кислотного гидролиза гликозидов при выделении. Единственная группа фенольных соединений, которые не связываются с сахарами с образованием гликозидов,— это полимерные лигнины и лейкоантоцианидины. Однако лигнин встречается в стенках клетки в тесной связи с полисахаридом — целлюлозой такая же комбинация возможна и в случае лейкоантоцианидинов. В низших растениях, и особенно у бактерий и грибов, фенольные соединения (например, антрахиноны, оксикоричные кислоты и фенолокислоты) обычно не присоединены к сахарам. Немногие фенольные соединения, обнаруженные в животном мире, обычно также находятся в свободном состоянии, хотя из некоторых насекомых были выделены гликозиды. [c.109]

    Высказано предположение, что глицеринтейхоевая кислота содержится во всех грамположительных бактериях в качестве внутриклеточного компонента, соединенного с цитоплазматической мембраной и локализованного между мем браной и стенкой клетки [3—5]. Все известные тейхоевые кислоты такого рода, за исключением одной [6], представляют собой полимеры фосфата глицерина, у которых остатки глицерина связаны друг с другом посредством фоофодиэфирных групп при С-1 и С-3. Гидроксильные группы при С-2 несут остатки сахаров пли D-аланина. Тейхоевые кислоты являются главными компонентами клеточной стенки многих грамположителыных бактерий. В этих микро- [c.130]

    Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2—4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает вьщеление аминокислот в среду. [c.45]

    У бактерии обычно очень жесткие стенки клетки за пределами ной плазматической оболочки, что образует на молекулярном уровне фективный барьер между внутренней и внешней сторонами клетки стенка защищает плазматическую оболочку от разрушения и особе от осмотического разбухания, которое, в противном случае, возник если клетка окажется в слишком водянистом растворе Таким обра многие бактерии не слишком боятся концентрации солеи и органиче соединений в окружающей их среде Еще одно преимущество заклю ся в том, что они обычно могут подвергаться иофилизации , проц в ходе которого бактерии сначала охлаждаются, а затем из них изв ется вода таким образом, чтобы нанести минима ьныи ущерб клето структурам [c.104]

    В-клетки. Третьим типом клеток, способным представлять антиген в иммуногенной форме для наивных Т-клеток, являются В-лимфоциты. Если ма1фофаги поглощают в основном бактерии, дендритные клетки — различные вирусы, то активность В-клеток направлена на белковые антигены, включая бактериальные токсины. Два основных свойства В-лимфоцитов определяют их потенциальную способность выступать в качестве антигенпрезентирующих клеток наличие поверхностных, специфических, иммуноглобулиновых рецепторов (sig) и выраженная экспрессия молекул II класса МНС. При этом у покоящихся В-клеток отсутствует третий обязательный компонент клеточной мембраны — костимулятор В7, однако он начинает экспрессироваться под влиянием компонентов бактериальных стенок, таких, например, как полисахариды. [c.220]


    Животным клеткам не нужна клеточная стенка ни для придания им жесткости, как клеткам растений, ни для защиты от осмотического щока, как бактериям. Эти клетки ограничены липидной бислойной мембраной, содержащей большое количество белков, лишь малая часть которых связана с олигосахаридами, образуя гликопротеидный комплекс. Содержание сахара может варьировать от нескольких остатков на большую молекулу белка до величины, сравнимой по массе с белковой частью. Остатки сахара могут быть связаны как с одним аминокислотным остатком, так и с несколькими. Так, к примеру, бычья рибонуклеаза В отличается от рибонуклеазы А (гл. 2) тем, что она содержит олигосахарид [c.204]

    С проблемой локализации ферментов непосредственно связан вопрос о существовании на поверхности клеток особых участков, где происходит экспрессия белка в окружающую среду. У мице-лиальных грибов секреция осуществляется преимущественно в апикальном участке гиф, т. е. в участке активного роста. Ферменты секретируются через определенные поры в стенке клетки. Для локализации катаболических ферментов, какими являются целлюлазы, пектиназы и другие, характерна некоторая вариабельность, вызванная специфическими функциями клеток, условиями их обитания. Так, условия существования целлюлолитических бактерий рубца жвачных и почвенных мицелиальных целлюлозоразрушающих грибов существенно отличны. Особенности образования, локализации и выделения таких ферментов представляются экологически целесообразной адаптацией микроорганизмов к данным условиям среды. Полагают, что внеклеточные ферменты синтезируются на рибосомах (или мезосомах), связанных с мембраной (Безбородов, Астапович, 1984). [c.69]

    Высокая прочность клеточных стенок грамположительных н грамотрицательных бактерий обеспечивается наличием структурной сетки, состоящей из аминокислот и сахаров (пептидо-гликан). Полисахаридная цепь образуется из чередующихся фрагментов N-ацетилглюкозамина (NAG) и N-ацетилмурамо-вой кислоты (NAM) (разд. 17.7), связанных 1р—4-связью. Между собой полисахаридные цепи соединяются с помощью разветвленной полипептидной цепи, прикрепляющейся к карбоксильной группе остатка NAM. Похожая на плетеную сумку структура укрепляет изнутри липидную мембрану. Если клетка начинает расти и делиться, то пептидогликан тоже должен растягиваться или видоизменяться. Контроль за синтезом пептидов, образующих стенки новой клетки, осуществляют ферменты, которые и становятся мишенью для р-лактамных антибиотиков. Эти препараты, вероятно, благодаря своей пептидоподобной структуре адсорбируются ферментом и затем ацилируют его активные центры за счет раскрытия р-лактамного цикла, сами превращаясь при этом в неактивные пенициллоиновые кислоты. Повреждения клеточной стенки, возникающие при подавлении активности ферментов, в конце концов приводят к тому, что клетка под действием осмотического давления разрушается. [c.370]

    Размножение бактерий происходит в основном вегетативно бипарным д лением клетки путем образования поперечных стенок у грамположительны или перетяжек у грамотрицательных бактерий. Для некоторых видов характе[ но почкообразовапие, а также коньюгация клеток. [c.8]

    До недавнего времени казалось, что колесо могло быть создано только человеческим разумом — в ходе естественной эволюции не могло возникнуть макроскопическое устройство для вращения вокруг оси. Однако выяснилось, что нечто вроде колеса имеется даже у бактерии Es heri hia oli. Каждая клетка Е. соИ имеет четыре длинных жгутика. Их вращательные движения позволяют клетке перемещаться. В основании жгутика, расположенном на клеточной стенке и мембране, имеется колесо — кольцо из [c.413]

    Многие микроорганизмы, такие, как плесени и бактерии, состоят всего из одной клетки. Они могут иметь такие размеры, что их можно различать, пользуясь обычным микроскопом часто они имеют диаметр около 1 мкм (10 м), иногда же могут иметь и значительно ббльщие размеры, достигая в диаметре 1 мм и более. Клетки имеют вполне определенную структуру, включающую клеточную мембрану толщиной в несколько десятков нанометров, внутри которой заключено довольно вязкое вещество, называемое цитоплазмой часто клетки содержат и другие-структуры, различимые под микроскопом. Растения и животные состоят,, как правило, из совокупности клеток, которые могут быть самых различных типов даже в одном организме. Мыщцы, стенки кровеносных и лимфатических сосудов, разнообразные соединительные ткани, нервы и кожа человека состоят из клеток, соединенных между собой и образующих вполне определенную структуру. Кроме того, имеется множеств клеток, которые не принадлежат к этой структуре, а плавают в жидкости, входящей в состав организма. Наиболее многочисленными клетками подобного рода, являются красные клетки крови, или эритроциты Эритроциты человека имеют форму плоских дисков диаметром примерно 7,5 мкм и толщиной 2 мкм. Число эритроцитов в человеческом организме очень велико. В одном кубическом миллиметре крови содержится около пяти миллионов эритроцитов, а человек имеет около пяти литров-крови, т. е. пять миллионов кубических миллиметров крови. Следовательно, в теле человека имеется около 25-10 эритроцитов. Наряду с ними существует множество иных клеток, причем некоторые из них имеют очень небольшие размеры, подобно эритроцитам, тогда как другие значительно больше — нервная клетка может иметь диаметр около [c.383]

    Инфицирование клетки Е. соИ бактериофагом происходит следующим путем фаг впрыскивает свою ДНК через клеточную стенку в цитоплазму. Приблизительно через 20 мин после этого клетка лопается, и из нее выходит около 100 полностью готовых копий исходной вирусной частицы. Такая высокая скорость размножения позволяет проводить в пробирке в течение 20 мин генетические эксперименты, для которых потребовалось бы все население земного шара, если бы эти опыты проводились на людях. Главные принципы, лежащие в основе этого метода, были ясно изложены Бензером [130], который впервые составил карту тонкого строения гена. Частицы бактериофагов, подобно бактериям, можно посеять в чашке с агаром. Отличие заключается лишь в том, что агар должен содержать однородную суспензию бактерий, чувствительных к вирусу. В какой бы участок чашки ни попали вирусные частицы, они заражают какую-либо бактерию. Вокоре инфекция распространяется на соседние бактерии и в результате образуется стерильное пятно (рис. 15-20). Число основных вирусных частиц, содержащихся в суспензии, можно легко определить, сосчитав число стерильных пятен, образовавшихся в результате посева. [c.248]

    Ф-ции Т.к. в бактериальной клетке связаны с ионным обменом и регуляцией работы автолитич. ферментов (катализируют гидролиз сложного биополимера, составляющего каркас клеточной стенки), к-рые активны при росте и делении клеток. Мутантные клетки бактерий, лишенные Т.к., оказываются нежизнеспособными. К вторичньпи ф-циям Т. к. относят их антигенные св-ва и связывание фагов. Стрептококковые, стафилококковые и др. бактериальные инфекции человека и животных сопровождаются выходом Т.к. в органюм, что приводит к развитию постинфекц. осложнений в виде эндокардитов, нефритов, артритов и др. [c.510]

    С помощью плазмид можно также осуществить Т. протопластов (клетки с удаленной клеточной стенкой), к-рые затем регенерируют в полноценные клетки. ДНК, проникая в них, почти не повреждается и остается двунитевой. Плаз-мидная Т. во многом близка к т.наз. трансфекции, когда бактерии поглощают ДНК фага (вирус бактерий), предварительно выделенную из фаговых частиц. Эта ДНК в бак-терщ1 кодирует образование новых частиц фага, к-рые разрушают затем бактериальную клетку и выходят наружу. [c.626]

    Основная проблема создания систем конверсии энергии биомассы в водород связана с превращением этих метаболитов в топливную форму. Для биотехнологии можно было бы воспользоваться и другими механизмами превращения энергии, вьывленными у микроорганизмов. Например, галофильная бактерия На1оЬас1епит каЬЫит способна использовать световую энергию, улавливаемую пурпурным пигментом (бактериородопсином), вмонтированным в мембрану клетки. Молекула пигмента состоит из одной поли-пептидной цепи, к которой прикреплена молекула ретиналя, являющегося светочувствительной частью пигмента. Под влиянием солнечного света изменяется конформация пигмента, приводящая к переносу ионов водорода (Н ) через мембрану. Пигмент является как бы протонным насосом. Молекулы бактериородопси-на располагаются в мембране триадами, и перекачивание протонов через мембрану обеспечивает градиент концентрации Н (АН ), вследствие чего они движутся к наружной стенке, у которой пространство подкисляется и возникает электрохимический градиент (Ац н)- [c.27]

    Существенный недостаток методов химического синтеза аминокислот состоит в получении целевых препаратов в виде рацемической смеси D- и L-стереоизомерных форм. Подавляющее большинство природных аминокислот относится к L-ряду. D-a-ами-, нокислоты обнаружены лишь в составе гликопротеинов клеточных стенок бактерий, антибиотиков и некоторых токсинов. Проницаемость L-аминокислот в клетке в 500 раз превышает таковую ее антипода. Стереоспецифичны также транспорт и метаболизм аминокислот. Исключением в этом отношении является лишь метионин, метаболизм которого нестереоизбирателен, благодаря чему данная аминокислота получается преимущественно путем химического синтеза. Разделение рацематов других аминокислот — дорогая и чрезвьиайно трудоемкая процедура. [c.42]

    Антибактериальные свойства пенициллинов и цефалоспорииов вытекают из их способности ингибировать ферменты, ответственные за конечную стадию биосинтеза бактериальной клеточной стенки. Бактериальная клеточная стенка представляет собой макромолекулярную сетку, полностью окружающую клетку и обеспечивающую ее структурную целостность. В присутствии пенициллинов и цефалоспорииов нарушается тонкий контроль деятельности расщепляющих и синтезирующих ферментов, необходимый для правильного роста клеточной стенки растущих бактерий. Возникающая в таких условиях клеточная стенка становится дефектной и не может обеспечить защиту хрупкой мембраны цитоплазмы от внешнего осмотического давления. При этом внутриклеточная жидкость прорывается сквозь мембрану цитоплазмы и организм погибает [19, 20]. [c.339]

    Процедура вьщеления ДНК в клетки дрожжей довольно проста. Обычно целлюлозную клеточную стенку удаляют обработкой ферментами, получая так называемые сферопласты. Их инкубируют с ДНК в присутствии СаС и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая ин( а-ция сферопластов в среде с агаром восстанавливает клеточную стенку. Селекция дрожжевых клонов, трансформированных рекомбинантными плазмидами, основана на применении в качестве клеток-хозяев определенных мутантов, не способных расти на среде, в которой отсутствует тот или иной питательный компонент. Векторная плазмида содержит гены, которые при попадании в клетку-хозяина придают ей этот недостаюший признак. Трансформанты легко отбираются по их способности давать колонии на обедненной среде. Применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Эти клетки подобно В. subtilis секретируют большое количество белка во внеклеточную среду, что используется также для секреции чужеродных белков, например интерферона человека (с. 43). [c.125]

    Одним из наиболее интересных объектов, которые удается наблюдать под электронным микроскопом, являются Т-четные бактериофаги (Т2, Т4 и Тб), инфицирующие бактерии Е. со-Путь проникновения многих вирусов в клетку неизвестен, и Т-четные фаги являются редким исключением Эти частицы действуют как своего рода молекулярные шприцы , прокалывая клеточную стенку бактерий-хозяев и впрыскивая в них свою ДНК. Вирусная частица, длина которой 200 нм, а масса 255-10 дальтон, содержит в своей головке, имеющей форму вытянутого икосаэдра размером 100X70 нм, приблизительно 130-60 дальтон ДНК. Поверхность головки бак- [c.327]

    Исследования умеренных фагов сальмонелл позволили понять некоторые особенности механизмов, с помощью которых эти бактериальные вирусы связываются со стенками клеток-хозяеш. Местом первичного присоединения являются, по-видимому, сами О-антигены. Тонкие нити, расположенные на отростке фага (дополнение 4-Д), действуя наподобие антител, связываются со специфическими группировками полисахарида. Однако в результате включения генома фага и изменения строения О-антигена последующее присоединение -вирусов блокируется. В то же время клетки бактерий становятся восприимчивыми к вирусам другого штамма [109]. [c.394]

    Развитие биологической химии привело к созданию новых отраслей науки, методологически и методически тесно связанных с биохимией. Так, быстрыми темпами развивается молекулярная биология, генная и клеточная инженерия. В настоящее время достижимыми представляются задачи по синтезу генетического материала и встраиванию его в наследственный аппарат клетки. С помощью микробов возможен синтез белков и регуляторов, характерных для человека, таких, как инсулин или интерферон. Фундаментальная информация о химической природе компонентов биологической системы обеспечивает направленное биомедицинское влияние на несколько уровней системы 1) принципиально важным явилось создание веществ, пагубно действующих на патогенные микробы, способные развиваться в организме человека. Получение антибиотиков, выяснение механизмов их действия, разработка методов их синтеза и модификации позволило побороть многие болезни, в том числе и инфекционного характера. Наиболее ярким примером может служить создание целой серии антибиотиков пенициллинового ряда. Пенициллин и его аналоги, встраиваясь в стенку бактерий, предотвращают их рост и иочти не влияют на клетки организма человека. Многие антибиотики ингибирующе действуют на процесс биосинтеза белка в бактери- [c.198]

    Если на клетки микроорганизмов воздействуют слишком высокие концентрации веществ в растворе, может произойти плазмолиз— часть воды выйдет из клеток и протоплазма отойдет от клеточной стенки. Это явление можно наблюдать в микроскоп если, например, поместить дрожжевые клетки в каплю 2— 5%-ного раствора НаС1. Большинство бактерий легко переносят 0,5—3%-ную концентрацию солей, а галофильные микроорга низмы выдерживают даже 29%-ную концентрацию. Следует отметить, что по осмотической активности 20%)-ный раствор соли эквивалентен 60%-ному раствору сахара, т. е. поваренная соль осмотически в 3 раза активней. [c.54]


Смотреть страницы где упоминается термин Бактерии стенки клетки: [c.374]    [c.138]    [c.44]    [c.122]    [c.107]    [c.94]    [c.282]    [c.145]    [c.7]    [c.571]    [c.469]    [c.52]    [c.124]    [c.153]    [c.17]    [c.21]    [c.22]    [c.26]    [c.22]    [c.32]    [c.355]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Бактерии как клетка

Стевны

Стейси



© 2024 chem21.info Реклама на сайте