Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина, стойкость

    Фторопласт-4 — рыхлый, волокнистый, тонкоизмельченный белый порошок, не смачивается водой и не набухает в ней. По химической стойкости он превосходит все известные материалы, включая золото и платину, не растворяется ни в одном известном растворителе. Фторопласт-4 работает в диапазоне температур —269—260° С. Пленка его сохраняет гибкость при температуре ниже —100° С и не становится хрупкой в среде жидкого гелия. [c.207]


    Ввиду тугоплавкости и высокой химической стойкости платины из нее изготовляют лабораторную посуду тигли, чашки, лодочки и т. п. [c.698]

    Иридии отличается от платины очень высокой температурой плавления и ен е большей стойкостью к различным химическим воздействиям. На иридий не действуют ин отдельные кислоты, ин царская водка. Кроме того, иридий значительно превосходит платину своей твердостью. [c.700]

    Наиболее активным гидрирующим компонентом катализатора как в отношении высоких выходов, так и в отношении стойкости к сернистым соединениям является платина. В качестве изомери-зующего и расщепляющего компонента катализатора обычно применяется окись алюминия или алюмосиликаты. [c.151]

    Ванадий, ниобий и тантал взаимодействуют с кислородом,галогенами, азотом, водородом, углеродом и другими веществами — оксидами, кислотами и т. д. Однако химическая активность этих металлов проявляется только при высоких температурах, когда разрушается защитная пленка, делающая нх пассивными при обычных условиях. Особенно прочная пленка образуется иа поверхности тантала, который по химической стойкости не уступает платине. [c.276]

    Магиий и оловянистые бронзы обладают низкой коррозионной стойкостью а растворах соли. Платина при температурах выше 500 С корродирует с большой скоростью, если в расплаве содержатся окислители, [c.825]

    Катализаторы для первой ступени или одноступенчатого гидрокрекинга обычно содержат окислы никеля (ики кобальта), вольфрама (или молибдена), окислы кремния и алюминия в кристаллической форме. Катализаторы для второй ступени гидрокрекинга при переработке очищенного сырья (с содержанием серы не более 100-10 и азота менее 1-10 %) могут не содержать молибдена (или вольфрама), но вместо никеля содержат драгоценные, металлы (палладий или платину). Катализаторы для первой ступени или для одноступенчатого процесса должны обладать особенно высокой стойкостью к ядам, чтобы их можно было использовать при работе на неочищенном сырье. Необходимо также, чтобы поры катализатора по размерам отвечали размерам молекул перерабатываемого сырья. [c.215]

    Кроме того, аноды,. используемые в хлорных электролизерах, должны обладать высокой химической стойкостью не разрушаться под действием влажного хлора, кислорода в момент выделения, соляной и хлорноватистой кислот. Этй м требованиям в определенной степени удовлетворяют магнетит, двуокись марганца, уголь, графит и платина. В последнее время разработан новый анодный материал титан, покрытый окислами рутения. Основные характеристики Некоторых указанных электродных материалов даны в табл. V- . [c.134]


    Распылитель и камера находятся в постоянном контакте с растворами проб, которые чаще всего являются агрессивными. Поэтому распылители изготавливают из коррозионно-стойких материалов, например из нержавеющей стали. Большей стойкостью обладают распылители, у которых центральный капилляр изготовлен из платино-иридиевого сплава, а остальные [c.149]

    В качестве анодного материала при электрохимическом получении йодоформа можно использовать платину, никель, графит, нержавеющую сталь, электрохимический компактный диоксид свинца, ОРТА. Выход по току йодоформа на этих анодах примерно одинаков и при плотности тока 2 кА/м и температуре 60 °С составляет 70—80 %. Аноды из графита, никеля и нержавеющей стали имеют низкую коррозионную стойкость и постепенно разрушаются, загрязняя йодоформ. Аноды из диоксида свинца и ОРТА более устойчивы. Наибольшей стойкостью обладают платиновые аноды. [c.203]

    Политетрафторэтилен выпускается в виде пластмассы, называемой тефлоном или фторопластом. Весьма стоек по отношению к щелочам, концентрированным кислотам и другим реагентам. По химической стойкости превосходит золото и платину. Негорюч, обладает высокими диэлектрическими свойствами. Применяется в химическом машиностроении, электротехнике. [c.611]

    Широкое применение платиновые металлы и сплавы нашли как коррозионно-стойкие материалы. Добавка 10% иридия к платине повышает ее химическую стойкость и твердость втрое. Такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах, в них выращивают кристаллы для лазерной техники. Эти сплавы применяют также для изготовления хирургических инструментов и эталонов. Малые добавки иридия к титану и хрому резко повышают стойкость их к действию кислот. [c.410]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    В отсутствие кислородя и солей тяжелых металлов п растворах кислоты золото, платина, палладий обладают высокой коррозионной стойкостью. [c.842]

    Очень сильно разрушает кислота стекло, кварц и кремнистые чугуны с образованием летучего фторид 1 кремния. При высоких тем пературах стойки платина, палладий и золото, но и присутстоии кислорода их коррозионная стойкость снижается. [c.853]

    Чистый палладий не выдерживает давления, он растрескивается и разрушается в среде водорода, поэтому проведено большое числл исследований [27] по подбору сплава палладия, с другими металлами. В настоящее время имеются сплавы с более высокой прочностью, стойкие в среде водорода и при наличии таких примесей как СО, СОа, Н3О и углеводороды С —Сд, причем проницаемость водорода через сплавы палладия выше, чем через чистый палладий. Однако такие сплавы неработоспособны при наличии в газе сернистых соединений. Хорошую проницаемость и высокую стойкость показали сплав палладия с серебром и никелем (85% Р<1, 10% А ,. 5% N1), сплав палладия с серебром, иридием и платиной (66% Р(1, 31% Ag, 3% 1г, 0,2% Р1). Имеется предложение [28] с целью удешевления сплава заменить серебро медью. [c.55]

    Важное достижение в повышении коррозионной стойкости пассивирующихся сплавов — так называемое катодное легирование. Как было показано исследованиями Н. Д. Томашова и Г. П. Черновой [42], повышение устойчивости сплавов в условиях возможности пассивного состояния может быть осуществлено введением в сплавы дополнительных катодных составляющих. Например, легирование нержавеющих сталей типа 1Х18Н9 присадками платины, палладия или меди в небольших количествах позволило значительно повысить их коррозионную стойкость до сравнению со сталями без присадок. Сталь Х27 при дополнительном ее легировании пла- [c.38]


    При риформинге сырья с высоким содержанием нафтеновых углеводородов снижение содержания платины в катализаторе с 0,6 до 0,35 вес. % может не повлиять на качество бензина, ю стойкость катализатора к отравлению уменьшится и его эксплуа-гтация усложнится. По экономическим соображениям содержание платины в катализаторе не должно превышать 0,8 вес. % [28]. Увеличение активности, селективности действия и стабильности атиновых катализаторов достигается не только усовершенство- [c.65]

    В присутствии избытка МНд, например в растворах минеральных удобрений, скорость коррозии в МН4ЫОз при комнатной температуре может достигать очень высоких значений — до 50 мм/год [21—24] (рис. 6.13). Комплексное соединение, образующееся в этом случае, имеет формулу [Ре(МНз)в ](ЫОз)2 [24]. Реакция, очевидно, идет с анодным контролем так как контакт низколегированной стали с платиной (при равной площади образцов) не влияет на скорость коррозии. Структура металла влияет на коррозионную стойкость. Так, нагартованная малоуглеродистая сталь корродирует с большей скоростью, чем закаленная при повышенной температуре. Это свидетельствует, что коррозия протекает не с диффузионным контролем, а зависит от скорости образования ионов металла на аноде и, возможно, до некоторой степени от скорости деполяризации на катоде. [c.119]

    Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л Ni [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз [12], причем одинаково эффективно по- [c.373]

    Окисление воздухом показывает, что стойкость полиметиленовых циклов ниже, чем у ароматических, и еще понижается с увеличением молекулярного веса за счет заместителей. Продуктами окисления являются кислоты и оксикислоты. Дегидрогенизация полиметиленовых углеводородов легко протекает с платиновым или палладиевым катализаторами. Предложено также много катализаторов смешанного типа, работающих при температурах более высоких, чем в случае платины, в результате чего, кроме продуктов дегидрирования, получаются в небольшом количестве ароматические углеводороды, образовавшиеся вследствие дегидроциклизации. Смешанный платиново-железный катализатор снижает роль реакций дегидроциклизации. Дегидрирование позволяет количественно перевести шестичленные полиметиленовые углеводороды в ароматические, причем, пятичленные изомеры, а также гемзамещенные остаются незатронутыми. Платиновый катализатор имеет значение не только в аналитической химии, но применяется также в заводских процессах ароматизации средних нефтяных фракций, превращающихся при температуре около 400° в смесь легких углеводородов, содержащих большое количество ароматических.  [c.87]

    Ц и р к о н и й обладает высокой стойкостью к действии )а ,-банленпой серной, соляной и азотной -кислот при различных температурах. благодаря чему его начинают применят11 в химическом машиностроении. Цирконий устойчив в среде щавелевой и муравьиной кислот, солянокислого анилина, в 10—40%-ных растворах едкого натра и едкого кали. В некоторых случаях этот металл может заменить даже платину. [c.88]

    Палатина вследствие высокой коррозионной устойчивости и низкого перенапряжения хлора в наибольшей степени удовлетворяет требованиям, предъявляемым к анодным материалам. Широкое ее применение ограничено высокой стоимостью. Для сокращения затрат аноды изготовляли из тонкой платиновой фольги, они работали с высокой плотностью тока (до 3000 А/м ). Для повышения стойкости платины ее сплавляли с 10% иридия. Тонкие платиновые электроды в условиях большой плотности тока создавали повышенное напряжение на ванне. [c.139]

    Анодным материалом в производстве Na 104 является почти исключительно платина в виде проволоки, сетки или фольги. В последнее время стали использовать аноды из платинированного титана и двуокиси свинца. Применение бихромата при работе с анодами из двуокиси свинца исключается вследствие отрицательного влияния его на процесс и стойкость анодов. Катодное восстановление обычно снижают добавлением Юг/л хлорида магния или 2 г/л фтористого натрия. [c.193]

    С целью экономим в весе ее применяют в виде тонкой лро волоки толщиной 0,05—0,08 мм, намотанной сеткой на каркас из стеклянных или пластмассовые стержней. Чтобы придать ей прочность и износоустойчивость, применяют до бавку ]0% иридия. Чем М1еньше содержание в ллатнне примесей, тем выше стойкость анода. Удельное сопротивление платины в шесть раз выше. чем у меди, поэтому нельзя применять большие плотности тока, в платиновом аноде дошускается проходная плотность тока около 4 а/мм . При конструировании токоподводов к аноду необходимо предусматривать травильное распределение тока. [c.131]

    Для изготовления тиглей, лодочек, чашек и т. д., используемых в лабораториях, применяют химически стойкие металлы или металлы, имеющие высокую температуру плавления (табл. Е.2). Платина, пожалуй, наиболее широко применяемый для изготовления аппаратуры благородный металл, обладает и тем и другим свойстЕ1ами. При легировании платины родием или иридием улучшается не только ее механическая прочность, но и химическая стойкость. Максимальная температура применения платинородиевого сплава с содержанием 10% Rh достигает 1700°С. [c.479]

    Сплавы, па основе никеля можно разделить на жаропрочные, магнитные и сплавы с особыми свойствами. Жаропрочные сплавы никеля используются в современных турбинах и реактивных двигателях, где температура достигает 850— 900 °С таких температур сплавы на основе железа не выдерживают. К важнейшим жаропрочным сплавам никеля относятся нимоник, инконелъ, хастеллой. В состав этих сплавов входит свыше 60% никеля, 15—20% хрома и другие металлы. Производятся также металлокерамические жаропрочные сплавы, содержащие нике.ль в качестве связующего мета.лла. Эти сплавы выдерживают нагревание до 1100 °С. К сплавам никеля с особыми свойствами принадлежат монель-металл, никелин, константан, инвар, платинит. Монель-металл (сплав никеля с 30% меди) широко используется в химическом аппаратостроении, так, как по механическим свойствам он превосходит никель, а по коррозионной стойкости почти не уступает ему. [c.631]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    Ниобий и тантал входят в состав жаропрочных и коррозионноустойчивых сплавов. Химическая стойкость ниобия и тантала обусловила их применение в химическом машиноаппаратостроении в качестве заменителя платины. Их также используют как конструкционные материалы в энергетических ядерных реакторах. Ниобий и тантал обладают способностью хорошо поглощать газы и используются в вакуумной технике. [c.137]

    Платина представляет собой серо-белый тугоплавкий пластичный металл легко поддается ковке, чеканке, вытягивается в нроволоку, хорошо обрабатывается давлением. Платина обладает высокой коррозионной стойкостью. При обычной температуре она устойчива ко всем реагентам, кроме царской водки и брома. При нагревании реагирует с галогенами, при температуре красного каления взаимодействует с 5, 5е, Те, Аз, С, Р. Расплавленные щелочи корродируют платину, особенно в присутствии окислителей. [c.160]


Смотреть страницы где упоминается термин Платина, стойкость: [c.317]    [c.694]    [c.512]    [c.524]    [c.574]    [c.67]    [c.274]    [c.276]    [c.288]    [c.280]    [c.835]    [c.849]    [c.294]    [c.217]    [c.495]    [c.545]   
Химия органических соединений фтора (1961) -- [ c.31 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Платина, коррозионная стойкост

Платина, коррозионная стойкост в растворах щелочей

Платина, коррозионная стойкост растворах кислот в растворах солей

Платина, коррозионная стойкост температурах в расплавленных солях

Сплавы платины с медью, коррозионная стойкость в смазочных маслах



© 2025 chem21.info Реклама на сайте