Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биомасса кормовая

    Спектр продуктов, образующихся методами биотехнологии, необычайно широк и разнообразен. Целевыми продуктами биотехнологических производств могут быть интактные клетки. Одноклеточные организмы используют для получения биомассы, являюшейся источником кормового белка. Клетки, особенно в иммобилизованном состоянии, выступают в роли биологических катализаторов для процессов биотрансформации. [c.32]


    Активный ил богат азотом, фосфором, микроэлементами (медь, молибден, цинк). После термической обработки его можно использовать как удобрение. Но необходимо учитывать и возможные отрицательные последствия его применения в связи с наличием солей тяжелых металлов и т. п. Извлечение ионов тяжелых металлов и других вредных веществ из сточных вод гарантирует получение безвредной биомассы, которую можно использовать в качестве кормовой добавки или удобрения. В случае образования больших объемов осадков сточных вод, содержащих соли тяжелых металлов, целесообразно сжигание осадков. В ФРГ предложен способ получения заменителей нефти и каменного угля на основе активного ила. Подсчитано, что количество тепла, получаемое при сжигании 350 тыс. т активного ила, эквивалентно его количеству, получаемому при сжигании 350 тыс. баррелей нефти и 175 тыс. т угля. Ведутся поиски и других путей утилизации осадков и активного ила, образующихся при очистке сточных вод. [c.110]

    Для сушки активного ила и осадков сточных вод рекомендуют распылительные сушилки. Перед сушкой вязкую иловую суспензию целесообразно подогреть. При использовании биомассы в качестве кормовой добавки необходима ее тепловая обработка при 130—150°С. [c.110]

    Целлюлозно-бумажное произ-во занимает главное место среди Л.п. по объемам перерабатываемого сырья и готовой продукции Оно потребляет в СССР ок. 48 млн. м древесины (1986)- т. наз. балансовую и дровяную (80%), отходы лесозаготовок и деревообработки (щепа, опилки-20% доля их нз года в год возрастает) для выработки целлюлозы, древесной массы и получения из них разл. видов бумаги и картона. В пром-сти применяют в осн. сульфитный и сульфатный методы варки целлюлозы. Сульфитный метод (с его помощью получают 40% целлюлозы) позволяет производить легко отбеливаемую целлюлозу, а нз сульфитных щелоков-этанол н сухую микробную биомассу (кормовые дрожжи) этим методом перерабатывают почти исключительно древесину хвойных пород (преим. ель), из к-рой получают наиб прочную бумагу. Сульфатный метод дает возможность перерабатывать древесину любых хвойных и лиственных пород, особенно сосны и лиственницы, в разл. виды целлюлозы, в т. ч. вискозную и ацетатную. [c.586]

    Масса микроорганизмов, накопленная в результате процесса окисления парафиновых углеводородов, является побочным продуктом процесса и может быть использована в качестве кормового белка. Суть микробиологической депарафинизации заключается в контактировании нефтяного сырья с дрожжами в минеральной водной среде при перемешивании воздухом, последующем отстаивании водной среды и сепарации сырой биомассы от депарафинированного продукта. Процесс протекает при температуре 26— 35 °С, pH минеральной водной среды 3—4,5, концентрации сырья в среде 10—25% и концентрации дрожжей 25—35 г/л длитель- [c.191]


    Одна из американских корпораций предлагает технологию переработки навоза крупного рогатого скота с использованием микробиологического процесса и получает два продукта кормового назначения. Один из продуктов содержит много клетчатки, белка до 8% и напоминает свежие древесные опилки с запахом силоса. Второй продукт представляет собой тонкодисперсный порошок, содержащий 25-у35% белка. Данный технологический процесс переработки навоза заключается в сборе жидкого навоза (около 10 кг от каждой коровы в день) в резервуары, где он выдерживается 3—4 сут. В результате микробиологических процессов утилизируются азотистые соединения. Далее следует разбавление водой и химическая обработка с последующим отделением волокнистых примесей. Из жидкости выделяют богатую белком микробную биомассу, которую обезвоживают и получают вышеупомянутый белковый концентрат, а волокнистые примеси подвергаются силосованию. Один комплекс переработки навоза обслуживает 20 тыс. животных. [c.224]

    Один из вариантов — метановое брожение разбавленного водой навоза в анаэробных термофильных условиях. Процесс осуществляется в закрытых резервуарах — метановых танках. Выделяется метан — газ, который используется в качестве горючего. Бактериальную биомассу отделяют центрифугированием или осаждением и обезвоживают (см. получение кормового витамина В12). ВодУ рециркулируют или используют для орошения полей. [c.224]

    Липиды выделяют из биомассы экстракцией эфиром. Из 1 т сухого торфа можйо получить 40—50 кг липидов. По физико-химическим свойствам они близки к растительным маслам, которые используют во многих отраслях промышленности для технических нужд. Возможно отобрать такие культуры микроорганизмов и создать условия культивирования, чтобы в биомассе накапливалось меньше липидов (15—30%), но больше белков (30—40%). В этом случае после экстракции липидов получают ценный кормовой препарат — микробный жмых. [c.134]

    Как уже говорилось, микробная клетка — это совершенная машина . Однако для большинства промышленных задач генетическая программа клетки должна быть перестроена таким образом, чтобы направить биосинтетический потенциал клетки на производство необходимого продукта, а не на непрерывное само-воспроизводство. Даже в тех случаях, когда ставится цель простого получения биомассы (кормовой белок), могут потребоваться изменения свойств, улучшающие технологические параметры процесса, повышающие конверсию субстрата в продукт и т. д. [c.7]

    Величина рыбопродуктивности водоемов и другие биологические показатели (площади нерестилищ, места нагула и зимовки, биомасса кормовых организмов, концентрация молоди, коэффициент промыслового возврата и т.п.) определяются по статистическим данным об уловах, отчетным данным добровольных спортивных обществ, экспертным оценкам любительского и потребительского рыболовства, а также по данным имеющихся публикаций и отчетных материалов по проведенным исследованиям. В случаях отсутствия таких материалов проводятся необходимые дополнительные исследования. [c.340]

    Эти процессы основаны на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, в качестве источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления алканов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового елка. Депарафинизат используют как компонент зимнего дизель — [c.272]

    Для современного биохимического производства кормовых дрожжей из н-парафинов нефти мощностью 100 тыс. т биомассы в год общее количество выделяемого при биосинтезе тепла составит порядка 325.10 кДж/ч. Проблема использования этого тепла на сегодняшний день остается нерешенной. Сложность задачи заключается также в сравнительно низких рабочих температурах процесса биосинтеза (32—36°С),что приводит к значительным расходам охлаждающей воды в теплообменных устройствах. [c.31]

    В микробиологической промышленности, так же как и в других производственных сферах, все технологические процессы связаны с большим расходом воды. Необходимо отметить, что главный процесс — культивирование микроорганизмов — идет в водной среде. Масса клеток в конце ферментации обычно не превышает 1—2%, а концентрация растворенных веществ — 5—10%. Независимо от того, где находится целевой продукт — в клеточной массе или в растворе, нерастворимую фракцию, включая и биомассу, перед спуском непригодного жидкого остатка в канализацию отделяют центрифугированием, фильтрацией или осаждением. Если в жидкости после выделения нужных продуктов остается много редуцирующих веществ в виде ассимилируемых микроорганизмами источников углерода, то такую жидкость культивации можно использовать в качестве среды для получения кормовых дрожжей или кормового витамина В и, а также других полезных веществ и продуктов. Однако даже после повторного использования жидкие отходы еще содержат определенное количество веществ, дальнейшее использование которых невыгодно. Эти отходы вместе с питьевой, бытовой и другими видами воды попадают в канализацию. Объем сточных вод можно уменьшить, применяя, где возможно, рециркуляцию. Это в первую очередь относится к охлаждающей воде. В ряде случаев остаток культуральной жидкости или часть ее можно использовать для приготовления питательных сред. [c.215]


    Составы аминокислот, полученных в результате жизнедеятельности дрожжевых грибов, развивающихся на нормальных алканах нефтяного происхождения и на сахарах [22], а также на другом сырье, содержащем нормальные алканы, оказались близкими, а экономика прессов сопоставима [22]. В настоящее время основным сырьем служат нефтяные нормальные алканы. Процессы ферментации могут различаться по используемой культуре микроорганизмов, аппаратурному оформлению, режиму, хотя принципиально они близки. Так, во Франции работает промышленная установка производительностью 50 т биомассы в сутки с использованием в качестве сырья тяжелого газойля, содержащего 10 % алканов [23, 24]. Английская фирма Бритиш Петролеум использовала две схемы производства кормовых протеинов из очищенных нормальных алканов и из алканов нефтяного газойля [26]. [c.326]

    Изучена возможность использования жиросодержащих отходов мясоперерабатывающих предприятий в качестве источника углерода для выращивания дрожжевой биомассы - сырья для получения незаменимых аминокислот и кормовых добавок. Показано, что предварительный t идролиз жиров позволяет понизить темперагуру выращивания дрожжей и вести процесс при 25 С - в более мягком технологическом режиме. Анализ аминокислотного состава дрожжевого белка свидетельствует о высокой биологической ценности полученного продукта. [c.206]

    Против использования для кормовых целей биомассы дрожжей и бактерий имеется ряд возражений, в частности в связи с высоким содержанием в ней нуклеиновых кислот. Дрожжи содержат до 12% нуклеиновых кислот, быстрорастущие бактерии— до 16% ( допустимая норма нуклеиновых кислот в питании человека составляет 2 г в день). При разрушении в организме животных таких количеств нуклеиновых кислот образуется много нежелательных продуктов распада — мочевой кислоты и др. В то же время в грибах при тех же условиях выращивания содержится 1,5—2,8% нуклеиновых кислот. Кроме того, у дрожжей имеется толстая и прочная клеточная стенка, которая с трудом разрушается в организме животного и вследствие этого снижается доступность питательных веществ дрожжей. Дрожжевой белок не сбалансирован по серусодержащим аминокислотам. Среди дрожжей мало культур с целлюлазной активностью. Из всего сказанного выше ясно, что эта группа микроорганизмов не может использоваться для культивирования на целлюлозных средах. Необходимо также отметить, что дрожжи из продуктов гидролиза древесины могут усваивать только целлюлозу, геми- [c.117]

    Целесообразность аэробной стабилизации активного нла решает-отдельно в зависимости от мощности сооружений и наличия на оде цеха по производству кормовых дрожжей. Прн образовании ой биомассы избыточного активного ила около 10% от выработки шовых дрожжей ставится вопрос об экономической целесообраз- ти выработки кормовых дрожжей. [c.225]

    Производство биопрепаратов, в состав которых входит инактивированная биомасса клеток и продуктов ее переработки кормовые дрожжи, белково-витаминные концентраты и т.д. [c.428]

    В солодовой среде (сусло) дрожжи имеют ц, = 0,194-0,4, а кормовые дрожжи, выращиваемые на гидролизатах и отходах промышленности — ц, = 0,12- -0,17. При выращивании дрожжей в питательной среде за 1 ч на каждый 1 м среды можно получить 1 — 3 кг сухой биомассы. Зная удельную скорость роста ц,, можно вычислить продолжительность генерации , т. е. период удвоения количества биомассы. Эта величина обратно пропорциональная удельной скорости роста  [c.66]

    Микробиологическая депарафинизация (МБД) предназначена для получения низкозастывающих нефтяных фракций как топливных, /так и масляных. Процесс депарафинизации при помощи микроорганизмов основан на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, в качестве единственного источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления парафиновых углеводородов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового белка. Производство низкозастывающих продуктов осуществляется в две стадии собственно микробиологическая депа рафинизация и выделение депарафинизата из стойкой водно-эмульсионной смеси с микробной массой. [c.233]

    Я - поправочный коэффициент на разнокачественность нерестовых, нагульных или зимовальньк площадей, определяющийся как отнощение качественных показателей данного рыбохозяйственного участка к таким же показателям, средним для всех таких площа- дей в водоеме (для нагульных площадей - биомасса кормовых организмов, для нерестилищ - количество нарождающейся молоди, для зимовальных ям - количество особей, залегающих на единице площади). [c.342]

    Выбор сырья для производства кормовых дрожжей определяется способностью микроорганизмов эффективно накапливать белковую биомассу на углеводородах нефти, ресурсами и стоимостью сырья, а также техаико-экономв-ческими показателями переработки нефтяного сырья дяя получения качественного белкового продукта. [c.263]

    Содержание в нефтяных дистиллятах ароматических углеводородов и серн может изменяться в широких пределах. не оказывая существенного влияния на процесс выращивания биомассы. Применение дистиллятных фракций 240-360°С исключает возможность перехода в белки канцерогенных углеводородов, в частности 3,4-бензпи-рена. Наиболее внсокий эффект по снижению температуры застывания нефтяных дистиллятов достигается при использовании дистиллятов парафинистых нефтей типа ромашкинской, арланской, туймазинской, содержащих 18-20 н-алканав. По предварительным подсчетам [ 3], себестоимость кормовых дрожжей, полученных из нефтяных дистиллятов (с учетом необходимых затрат на очистку), составит ориентировочно 195-220 руб/т. [c.267]

    В СССР рекомендуют получать белковую биомассу микробиологической депарафинизацией дистиллятных фракций 240—360°С парафиннстых и высокопарафинистых нефтей [54]. По предварительным данным, себестоимость кормовых дрожжей из нефтяны. дистиллятов (с учетом необходимых затрат на очистку) составит ориентировочно 195—220 руб. на 1 т. В настоящее время БВК производят главным образом на основе чистых жидких нормаль ных алканов Си — С18, перегоняющихся в пределах 220—320 °С. [c.204]

    Для рещения экологических проблем предложено использовать бактерии, ранее селекционированные для получения кормового белково-витаминного концентрата (БВК) [4]. Сами БВК, содержащие, наряду с углеводородокисляющими микроорганизмами, в значительном количестве биогенные элементы, оказывают благоприятное действие на биологические свойства почвы, нормализуют ее микробиологические и биохимические параметры, снижают остаточное содержание нефтепродуктов и токсичность почвы для растений, т.е. могут использоваться для восстановления плодородия [45]. В частности, БВК паприн — продукт крупнотоннажного биотехнологического производства — представляет собой биомассу дрожжей, выращенных на -алканах основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности. [c.390]

    Поскольку в качестве одного из основных путей использования дрожжевой биомассы планируется получение аминокислот, было проведено определение аминокислотного состава белка выращенных дрожжей. Сравнение данного состава с таковым для паприна (используемого в качестве кормовой добавки биомассы углеводородокисляющих дрожжей) [2] указывает на высокую кормовую ценность полученного продукта (табл. 4). Биомасса .tropi alis богата незаменимыми аминокислотами, в частности, содержание такой ценной аминокислоты, как лизин превышает 7 г/100 г белка, тогда как в паприне его содержится 4,5 г/ 100 г белка, а в рыбной муке до 6 г /100 г белка. [c.211]

    Эффективным путем интенсификации массообменных процессов в колонных биореакторах за счет дополнительной турбулиза-ции среды и выравнивания профиля концентраций по сечению колонны является способ проведения процесса ферментации в присутствии плавающей насадки. Проведены экспериментальные и теоретические исследования работы колонного биореактора с плавающей насадкой, показавшие его высокую эффективность при проведении различных процессов микробиологического синтеза, в том числе при выращивании кормовых дрожжей на гидролизном и углеводородном субстрате, при культивировании мицелиальных культур, получении бактериальной биомассы и др. [c.207]

    Отходы очистки сточных вод. К этим отходам относятся многочисл. осадки, состав к-рых весьма разнообразен. Напр., при биохим. очистке сточных вод образуется избыточный активный ил, содержащий 99% влаги и ок. 160 г биомассы на 1 жидкости в расчете на сухое в-во в состав ила входят 37% белков, 20-35% аминокислот и витамины группы В. Для обеззараживания ил обезвреживают, уплотняют, стабилизируют и подвергают термич. переработке с получением белково-витаминных кормовых продуктов для с.-х. животных и техн. витамина В12. [c.436]

    Для извлечения водорослей из воды пруда может быть использовано центрифугирование с предварительной концентрацией водорослей во флотаторе. Полученная биомасса водорослей может быть использована в сельском хозяйстве в качестве удобрения или в животноводстве в качестве кормовой добавки. При необходимости интенсификации глубокой очистки сточных вод в биологических прудах может быть использован альгологичес-кий метод, т. е. внесение культуры водорослей в первую секцию пруда. [c.231]

    Клетки микроорганизмов растут и делятся очень быстро. Некоторые бактерии дают новую генерацию каждые 30 мин. Это значит, что за 5 ч из одной клетки может образоваться примерно 1000 клеток. Масса одной бактерии равна 0,2-10 мг, но масса образованной из нее биомассы через 16 ч равна уже 1 мг. В течение суток одна клетка образует около 1 кг биомассы, а в течение 2 сут — такое количество биомассы, которое трудно было бы вместить в один железнодорожный состав. Однако на практике прирост биомассы значительно меньше и новое поколение клеток, например дрожжевых, образуется через каждые 2—3 ч. При выращивании кормовых дрожжей в 1 м питательной среды за 1 ч можно получить около 3 кг биомассы дрожжевых клеток в пересчете на сухое вещество. Это означает, что с каждого кубического метра аппаратуры в течение суток можно получить около 30 кг белков. Для 1П0лучения такого количества животных белков в сутки необходимо держать 100 коров, а для получения такого же количества растительного белка, используя, например, горох, требовалось бы 18 га посевов этой культуры. Таким образом, микроорганизмы в сотни тысяч раз продуктивнее животных и растений. [c.4]

    В Институте микробиологии нм. А. Кирхеиыхтейна АН ЛатвССР разработан метод получения кормового концентрата триптофана. В его состав входит также дрожжевая биомасса. [c.168]

    Кормовой препарат витамина В г получают микробиологическим синтезом с Ba terium propioni um shermannii на углеводных средах — отходах свеклосахарного производства (мелассе). В сухой биомассе содержание витамина 6 2 составляет 350—400 мг в 1 кг. [c.596]


Смотреть страницы где упоминается термин Биомасса кормовая: [c.87]    [c.345]    [c.11]    [c.83]    [c.6]    [c.13]    [c.14]    [c.15]    [c.172]    [c.194]    [c.107]    [c.111]    [c.114]    [c.117]    [c.120]    [c.224]    [c.269]   
Производство белковых веществ (1987) -- [ c.73 , c.84 , c.90 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Биомасса

Использование биомассы избыточного активного ила в качестве кормовой добавки

Принципиальная технологическая схема получения кормовой биомассы

Технологические особенности производства кормовой биомассы на углеводородном сырье



© 2024 chem21.info Реклама на сайте