Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КИНЕТИКА РЕАКЦИИ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ

    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]


    КИНЕТИКА РЕАКЦИЙ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ [c.321]

    Состав и структура металлополимерных осадков определяются в первую очередь соотношением скоростей осаждения полимерных частиц и разряда металлических ионов. Скорости этих процессов зависят от концентрации полимера, электролита, поверхностно-активного веш,ества (ПАВ) — зарядчика частиц и режима электроосаждения. Наряду с адсорбцией ПАВ исключительно сильное влияние на электрохимическое выделение металла оказывает электрофоретическое осаждение полимера. Это показано на рис. 8. При введении ПАВ — дву-четвертичного аммониевого соединения — происходит сдвиг поляризационных кривых в область отрицательных значений потенциала на 0,3—0,4 В, а при электрофоретическом осаждении эпоксидного олигомера — до 2,5 В. Это свидетельствует о том, что наряду с адсорбционной поляризацией [20] важную роль играет электрофоретическая поляризация, т. е. поляризация за счет формирования электрофоретического осадка, характер которой, как показывают исследования кинетики формирования металлополимерного слоя, диффузионный [21]. Тормозящее действие полимера на протекание электродных реакций приводит к снижению содержания металла в металлополимерном осадке и к изменению его структуры. С увеличением концентрации полимера и электрокинетического потенциала размеры частиц металла уменьшаются от 2—3 до 0,2—0,5 мкм [22]. [c.117]

    По другой точке зрения происхождение металлического перенапряжения связано с процессом выделения водорода. Разряд водородных ионов является потенциально конкурирующей катодной реакцией при электролизе любых водных растворов, в том числе и растворов, содержащих соли металлов. Если на катоде наряду с металлом происходит также образование водорода, то последний может влиять и на кинетику электрохимического выделения металла, и на свойства его катодных осадков. Известно, что электролитические осадки железа, никеля и кобальта всегда содержат заметное количество водорода. Включения водорода рассматриваются как одна из возможных причин искажения кристаллической решетки осадков этих металлов, появления в них внутренних натяжений, хрупкости и т. п. В меньших количествах водород присутствует в осадках меди и цинка. Его практически не удается обнаружить [c.438]

    По другой точке зрения происхождение металлического перенапряжения связано с процессом выделения водорода. Разряд водородных ионов является потенциально конкурирующей катодной реакцией при электролизе любых водных растворов, в том числе и растворов, содержащих соли металлов. Если на катоде наряду с металлом происходит также образование водорода, то последний может влиять и на кинетику электрохимического выделения металла, и на свойства его катодных осадков. Известно, что электролитические осадки железа, никеля и кобальта всегда содержат заметное количество водорода. Включения водорода можно рассматривать как одну из возможных причин искажения кристаллической решетки осадков этих металлов, появления в них внутренних натяжений, хрупкости и т. п. В меньших количествах водород присутствует в осадках меди и цинка. Его практически не удается обнаружить в электролитически осажденных кадмии или свинце. Из этого следует, что металлическое перенапряжение увеличивается параллельно с количеством водорода, включенного в осадок металла, т. е. водород, по-видимому, затрудняет процесс катодного выделения металла. Предполагалось, что водород выступает здесь в роли отрицательного катализатора, тормозя разряд за счет создания поверхностной пленки или образования гидридов металлов. [c.439]


    Допущение того, что выделение металла совершается не как последовательная стадийная реакция, а как один элементарный акт, противоречит всем результатам, полученным при изучении кинетики различных электрохимических процессов. Если бы его применить, например, к реакции катодного выделения водорода, пришлось бы принять, что водородное перенапряжение не зависит от природы катода и энергетические изменения в ходе реакции всегда отвечают равновесному водородному электроду. Это не соответствует действительности. Чтобы объяснить связь, существующую между перенапряжением и природой металла, а также между величиной перенапряжения и составом раствора, необходимо, по-видимому, исходить не только из конечного и начального состояний металлических ионов, но и из природы элементарных актов. При этом следует учитывать и свойства реагирующих частиц на различных стадиях суммарного процесса. [c.437]

    То допущение, что выделение металла совершается не как последовательная стадийная реакция, а как один элементарный акт, противоречит всем результатам, полученным при изучении кинетики различных электрохимических процессов. Для реакции катодного выделения водорода, например, принятие такого допущения привело бы к не отвечающему действительности выводу о независимости водородного перенапряжения от природы металла. Чтобы объяснить связь, существующую между металлическим перенапряжением и природой металла, а также характер влияния состава раствора на величину перенапряжения, необходимо принимать во внимание не только начальное и конечное состояния металлических ионов, но и природу элементарных актов. При этом следует учитывать состояние и свойства реагирующих частиц на разных стадиях суммарного процесса. [c.437]

    Изучение перенапряжения прн электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда ионов Zn ((pzn - ,zn = —0.76 В) и ионов Н" (в нейтральном растворе фн -,н, = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, благодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие случаи электрохимической кинетики, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Величина водородного перенапряжения составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы -водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.421]

    В 1905 г. И. Тафель провел определение скорости электрохимической реакции ввделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов водорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, а некоторой химической стадией, которая входит как звено в суммарный процесс. В качестве такой стадии И. Тафель рассматривал рекомбинацию атомов водорода в молекулу водорода, а Н. И. Кобозев и Н. И. Некрасов — сочетание различных стадий удаления адсорбированных атомов водорода. [c.10]


    Реакции осаждения твердых металлов, являются наиболее сложными электрохимическими процессами. Они, во-первых, включают специфическую стадию образования новой фазы и, во-вторых, протекают на поверхности, работающая часть которой является неопределенной и вдобавок энергетически неоднородной. При выделении металлов, хорошо растворимых в жидком катоде, например в ртути, или находящихся в жидком состоянии, эти факторы отсутствуют, поэтому закономерности кинетики реакций выделения металлов в этих случаях наиболее просты. [c.322]

    Поляризация катодного выделения водорода, имеющая обычно электрохимическую природу, в существенной мере определяется материалом катода и практически не зависит от концентрации электролита [207]. Величина pH оказывает влияние на поляризацию процесса лишь при низких плотностях тока. Из побочных реакций, которые могут протекать на катоде, следует отметить процесс катодного восстановления сравнительно электроположительных катионов (например, меди, никеля), перешедших в раствор с анода [115]. Данный процесс облегчается в кислых средах. В достаточно концентрированных подкисленных нитратных электролитах может происходить катодное восстановление анионов N0 до анионов N0 , а при значительном отрицательном смещении потенциала до образования аммиака [184]. Восстановление катионов нейтрального электролита (обычно К" , Ма+) невозможно вследствие очень низких электроотрицательных значений их равновесных потенциалов, которые обычно не достигаются в условиях анодного растворения металлов. При исследовании кинетики анодного растворения металлов широко применяются методы снятия поляризационных кривых и температурно-кинетический метод. Рассмотрим несколько примеров использования этих методов применительно к анодному растворению металлов и сплавов различной природы. [c.35]

    Катодное выделение металлов является наиболее сложным разделом электрохимической кинетики, что связано с образованием новой фазы (осадка) на электроде, с непрерывным обновлением поверхности катода и ее энергетической неоднородностью. При изучении кинетики этой реакции практически всегда нужно учитывать протекание сопряженной реакции выделения водорода, причем большее значение имеет не величина перенапряжения водорода, а механизм выделения его на металле [5]. Кроме того, ряд электроотрицательных металлов вообще не может быть выделен из водных растворов. Со 100%-ным выходом по току можно выделить металлы, обладающие достаточно электроположительным равновесным потенциалом. [c.59]

    Для многих сложных окислительно-восстановительных электрохимических реакций, в частности для катодных процессов выделения водорода и электровосстановления кислорода, были установлены основные кинетические закономерности и выяснен механизм. Существенные успехи достигнуты в последнее время также при изучении процессов разряда-ионизации металлов применение различных импульсных методов позволило измерить токи обмена очень быстрых реакций, был выяснен механизм разряда и электрохимического образования комплексов некоторых металлов, а также роль ад-атомов и стадии образования кристаллической решетки в процессе электрокристаллизации и т. д. Однако в целом кинетика и механизм р еакций ра3 ряда 1и 0я зац ии металлов изучены значительно меньше, чем окислительно-восстановительных реакций. [c.25]

    Выяснение кинетического механизма анодного выделения кислорода является сложной задачей, что связано не только со значительными экспериментальными трудностями, но и с большим числом теоретически возможных вариантов протекания этого процесса. В реакции электролитического образования кислорода независимо от того, совершается ли она в кислых, нейтральных или щелочных средах, участвуют не два, как в реакции выделения водорода, а четыре электрона. Это приводит к появлению нескольких электрохимических стадий, каждая из которых может определять скорость всего анодного процесса. Наряду с этим при выделении кислорода необходимо считаться с возможностью замедленного протекания рекомбинации и электрохимической десорбции. Наконец, поскольку выделение кислорода происходит обычно на поверхности металла, степень окисленности которой зависит от потенциала и от времени электролиза, образование и распад окислов также могут влиять на кинетику этого процесса. [c.386]

    Если считать, что растворение металлов в кислотах протекает по электрохимическому механизму, а в настоящее время справедливость этой точки зрения, если исключить особые случаи растворения металлов при сильно отрицательных потенциалах, ни у кого сомнений уже не вызывает, то напрашивается однозначный вывод ингибиторы могут изменять скорость растворения лишь в том случае, когда они будут влиять на кинетику электрохимических реакций, лежащих в основе коррозионного процесса. Далее, если придерживаться тех же принципов, которые мы положили в основу рассмотрения механизма действия неорганических ингибиторов (влияние на кинетику электрохимических реакций), то, используя основные уравнения, определяющие зависимость скорости выделения водорода и ионизации металла от потенциала, мож- [c.108]

    При катодной поляризации в области потенциалов выделения водорода большинство металлов (кроме щелочных и щелочноземельных) коррозионно-устойчивы, и эта реакция может быть реализована на многих из них. В связи с этим она была предметом многочисленных исследований и стала основной модельной реакцией для развития современных представлений о кинетике электрохимических реакций. Многие из закономерностей, изложенных в гл. Н, 1,3 и 14, были установлены при изучении именно этой реакции. [c.358]

    Существует мнение, впервые высказанное Ферстером (1909), согласно которому анодное выделение кислорода во всех случаях соверщается только через образование промежуточных неустойчивых окислов. Переход последних в устойчивые окислы (или в состояние исходного металла с одновременной потерей кислорода, выделяющегося в газообразном виде) определяет кинетику всей электродной реакции. Таким образом, появление кислородного перенапряжения вызывается многими причинами и может быть связано с замедленным протеканием одной из следующих стадий разряда ионов гидроксила или молекул воды, рекомбинации атомов кислорода, электрохимической десорбции гидроксильных радикалов ОН, образования и распада неустойчивых промежуточных окислов электродного металла. [c.386]

    Диффузионной называют кинетику электрохимических реакций, скорость которых определяется скоростью диффузии разряжающихся на электроде частиц из глубины раствора к электроду, либо скоростью диффузии продуктов реакции от электрода. Примером электродных процессов, лимитируемых диффузией, могут служить процессы выделения щелочных металлов на ртутном катоде, скорость которых лимитируется скоростью диффузии щелочного металла от поверхности в глубь ртутного катода. [c.122]

    Большой крен электрохимии в сторону электродики, как нам кажется, не дает основания для пересмотра тематики, охватываемой данной серией монографий. Так, для понимания фундаментальных аспектов электродных процессов необходимо сначала детально выяснить поведение в растворе участвующих в реакции ионов, образующих одну из обкладок электродного двойного слоя. Поэтому в книгу включена глава, посвященная анализу основных факторов, определяющих кинетику гомогенных окислительно-восстановитель-ных ионных реакций в растворах, что облегчает рассмотрение более сложных проблем окислительно-восстановительных реакций на границе металл — раствор. В реакции электрохимического выделения водорода из кислых сред участвует гидратированный протон,  [c.9]

    Предпринимались неоднократные Попытки нахождени связи между каталитической активностью и другими свойства ми веществ. Например обнаружена линейная зависимост (рис. 1.4) между логарифмом плотности тока обмена реакци катодного выделения водорода и работой выхода электрона и металла, которая непосредственно связана с зарядом поверз ности, а соответственно и с адсорбцией частиц на поверхност1 Однако энергия адсорбции зависит не от одного какого-т свойства, а от природы катализатора, а также от природы рег гентов, степени заполнения реагентами и продуктами реакци растворителем и другими частицами, температуры и потенциг ла, поэтому пока не создана теория электрокатализа, позволя щая предсказывать оптимальные катализаторы для той ил иной реал ции. Электрокатализаторы подбираются в основно экспериментальным методом с учетом достижений кинетик электрохимических реакций и электрокатализа. [c.30]

    Однако на практике процесс электрохимического растворения металла анода, как правило, сопровождается пассивацией электродов, заметно искажающей кинетику процёсса, описываемую уравнением (116). Пассивацию анода вызывают не только химические отложения на поверхности электрода, но и выделяющиеся газообразные агенты (кислород на аноде и водород на катоде). Выделение водорода на катоде происходит по реакции  [c.224]

    Наличие избытка адсорбированного водорода. Если скорость процесса определяется разрядом, а отвод водорода с поверхности катода протекает без торможений, то при катодной поляризации количество адсорбированного водорода не должно заметно увеличиваться по сравнению с равновесным состоянием. Напротив, если скорость всего процесса лимитируется отводом водорода и рекомбинация водородных атомов совершается медленно, то количество адсорбированного водорода должно расти по мере отклонения в отрицательную сторону от его равновесного значения. Присутствие избытка адсорбированного водорода на металлах, для которых характерна замедленная рекомбинация, должно сказываться в тех случаях, когда величина поверхностной концентрации водородных атомов влияет на поведение и свойства электродов. Так, избыток адсорбированного водорода повышает емкость двойного электрического слоя и увеличивает перенапряжение. Поскольку скорость рекомбинации увеличивается параллельно с поверхностной концентрацией водорода, а последняя может расти до известного предела, отвечающего поверхностному насыщению, то для металлов, на которых кинетика выделения водорода определяется рекомбинацией, следует ожидать появления предельной плотности тока недиффузионного происхождения. При медленном протекании рекомбинации накапливающийся адсорбированный атомарный водород будет искать других путей для ухода с поверхности. Можно ожидать поэтому его проникновения в глубь электрода и диффузию через толщу металла, участия в реакциях восстановления, влияния на скорость электрохимического растворения металла и т. п. [c.371]

    В 1905 г. Ю. Тафель провел определение скорости электрохимической реакции выделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930 г.) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов вбдорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, [c.11]

    Однако только после Октябрьской революции в пашей стране широко и всесторонне развивается теоретическая и прикладная электрохимия, занимающ ая сегодня в ряде разделов ведущее положение в мировой науке. Советским ученым принадлежат широко известные труды в области электрохимической кинетики, исследование механизма и особенностей реакции выделения водорода, выделения и ионизации кислорода, выяснение связи между скоростью. электродной реакции и строением двойного электрического слоя и многие другие. В нашей страг(е плодотворно развивается электрохимическая теория коррозии и пассивности, внесен большой вклад в теорию электроосаждепия металлов. [c.62]

    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (см. рис. 79), энергия активации разряда уменьщается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение теплоты адсорбции должно повышать поверхностную концентрацию атомов водорода, а следовательно, увеличивать скорость рекомбинации, т. е. приводить к обратному эффекту. В результате наложения этих двух противоположных эффектов скорость рекомбинации может уменьшаться или увеличиваться с ростом теплоты адсорбции, но ее ускоряющее влияние должно быть всегда меньше, чем в случае разряда. Хотя опытные данные по теплотам адсорбции водорода на металлах малочисленны и противоречивы, тем не менее они позволяют утверждать, что на ртути, цинке и кадмии. теплоты адсорбции водорода значительно меньше, чём на металлах платиновой группы и семейства железа. Следовательно, на ртути, например, условия более благоприятны для замедленного протекания разряда, а на никеле — для замедленной рекомбинации. Эти соображения, высказанные Антроповым в 1949 г., привели его к заключению о существовании двух крайних групп металлов с различным механизмом перенапряжения водорода. К первой из них относятся металлы платиновой и железной групп, обладающие высокой адсорбционной способностью по отношению к аедороду. На этих металлах стадия рекомбинации должна играть решающую роль в кинетике катодного выделения водорода. Вторая группа включает ртуть, свинец, кадмий и другие металлы, почти не адсорбирующие водород. На металлах второй группы кинетика выделения водоро- [c.442]

    Процессы катодного выделения и анодного растворения в случае твердых металлов и некоторых окислов обладают по сравнению с другими электрохимическими реакциями некоторыми особенностями, связанными с тем, что конечные илп исходные вещества находятся в кристаллическом состоянии, а также с полупроводниковыми свойствами некоторых электродов. Однако раньше чем рассматривать эту сторону проблемы электроосаждения, мы обсудим вопрос о кинетике разряда ионов металла в тех условиях, когда металл выделяется не в кристаллическом, а в жидком состоянии, например образуя амальгаму при выделения на ртутном электроде. Обсуждение этого вопроса поможет в дальнейшем выявить особенности, связанные с кристаллическим строением электрода. Кроме того, многие закономерности в электрохимии металлов практически не зависят от агрегатного состояния металла электрода. Так, на жидкой ртути в 45%-ной хлорной кислоте (при температуре —38,8° С) ток обмена лишь на 15% больше, чем на твердой (при —38,9° С) [53]. В растворе 1 N ОаС1я-Ь [c.34]

    Как выяснено многочисленными исследованиями, процессы электроосаждения металлов на твердых металлических электродах являются одними из наиболее сложных электрохимических реакций. Они, как правило, протекают через несколько стадий, включающих процессы диффузии, адсорбции, химической реакции, разряда и кристаллизации участвующих в электрохимическом процессе частиц. Соотно-щение скоростей этих стадий определяет кинетику процесса как катодного осаждения, так и анодного растворения металла. Электроосаждение металлов из водных растворов также обычно сопровождается протеканием параллельной реакции выделения водорода, участием в реакции других частиц, находящихся в электролите, примесей ионов металлов, органических соединений, вводимых для регулирования качества осадков. В результате протекания реакции происходят изменения состава раствора у поверхности электрода и изменения состояния поверхности, что особенно сильно проявляется в первые моменты электролиза после включения тока. Несомненно, что все предшествующие электрокристаллизации металла стадии влияют на нее и, таким образом, определяют структуру, физико-механические и химические свойства электроосажденного металла. [c.4]


Библиография для КИНЕТИКА РЕАКЦИИ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ: [c.196]   
Смотреть страницы где упоминается термин КИНЕТИКА РЕАКЦИИ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ: [c.134]    [c.32]    [c.349]    [c.372]    [c.31]    [c.32]    [c.47]    [c.424]    [c.168]    [c.84]    [c.387]    [c.454]    [c.53]   
Смотреть главы в:

Теоретическая электрохимия -> КИНЕТИКА РЕАКЦИИ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ




ПОИСК





Смотрите так же термины и статьи:

Кинетика электрохимическая

Металлы выделение из руд

Электрохимические реакции

Электрохимический ряд металлов

Электрохимическое выделение металлов



© 2025 chem21.info Реклама на сайте