Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также хромосома

    Все сказанное до сих пор о хромосомах показывает, что эти образования крайне необходимы организму. Однако, хотя это и кажется странным, существуют также хромосомы, которые, по-видимому, безразличны или даже вредны для организма. [c.353]

    При обсуждении организации эукариотического генома нельзя не отметить тот основополагающий факт, что сама ДНК распределена по нескольким хромосомам. Клеточные хромосомы, вероятно, всегда содержат линейную дуплексную ДНК, хотя вдоль линейного остова встречаются двухцепочечные петли. Каждая хромосома в интерфазе содержит одну двойную спираль ДНК, как и каждая из двух сестринских хроматид метафазной хромосомы. Геномы многих вирусов эукариот, а также хромосомы хлоропластов и многих митохондрий представлены кольцевой ДНК. [c.10]


    Начавшийся процесс репликации хромосомы бактерии продолжается до тех пор, пока не удвоится вся ДНК. В этом смысле бактериальная хромосома представляет собой единицу репликации — репликон. Другие молекулы ДНК, которые могут присутствовать в бактериальных клетках (см. гл. V), также представляют собой отдельные репликоны. [c.60]

    Содержание ДНК в расчете на клетку обычно сохраняется постоянным в разных тканях одного организма. Отклонения от этого правила редкие. К ним относятся случаи образования в некоторых типах клеток политенных (многонитчатых) хромосом, образующихся в результате многократной редупликации ДНК без расхождения двуспиральных молекул, а также классические примеры утери ДНК ( диминуция хроматина ) в соматических клетках. Потери участков хромосом, иногда достаточно крупных, составляющих существенную часть материала хромосомы, как правило, касаются гетерохроматических районов. Функциональная значимость образования политенных хромосом и случаев диминуций не ясна. Эти факты лишь подчеркивают правило постоянства содержания ДНК на клетку, которое отражает принцип дифференцировки, основан- [c.185]

    Элементы, ограниченные ДКП, способны также перемещаться, используя рекомбинационные механизмы. В результате гомологичной рекомбинации между ДКП элемент вырезается из хромосомы, но в составе генома сохраняется один ДКП, присутствие которого сможет обеспечить повторную интеграцию, например, какой-либо другой копии из числа представителей данного гетерогенного семейства (рис. 119, г). [c.229]

    В конденсированном состоянии каждый домен хроматина представляет собой, вероятно, компактную глобулу, которая занимает в метафазной хромосоме четко определенное положение для каждого участка ДНК. При локализации определенных генов в метафазной хромосоме они всегда обнаруживаются в одном и том же ее участке. Регулярная организация метафазных хромосом подтверждается также тем, что окрашивание их различными красителями дает стандартную картину в виде чередующихся полос более и менее интенсивной окраски. Полученная при окрашивании характерная исчерченность является надежным тестом для идентификации отдельных хромосом. [c.248]

    Рассмотрим теперь наиболее важный аспект строения ДНК, а именно последовательность нуклеотидов, в которой и заключена генетическая информация. В кольцевой молекуле ДНК, образующей хромосому Е. соИ, содержится 3,8 млн. нуклеотидов. В сущности говоря, мы еще только приступили к детальному изучению нуклеотидной последовательности некоторых участков этой хромосомы. Однако если иметь в виду не детали, то можно сказать, что о хромосоме мы знаем не так уж мало. Точно известно, в частности, что индивидуальные гены в этой хромосоме расположены линейно. К 1972 г. было установлено расположение 460 генов на хромосомной карте (рис. 15-1 см. также табл. 15-1). [c.184]


    Блокируя эти операторы, репрессор предотвращает синтез ферментов, необходимых для исключения ДНК фага Л, из бактериальной хромосомы, а также для репликации и транскрипции остальных генов. [c.260]

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]

    Репликация ДНК в хромосомах дрозофилы была исследована также в быстро делящихся ядрах методом электронной микроскопии [191]. [c.273]

    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Если учесть тот факт, что ДНК обнаружена в хромосомах всех клеток, опыты Эвери заставляли предположить, что все гены состоят из ДНК. А раз так, для Фрэнсиса это означало, что не белки сыграют роль Розеттского камня в раскрытии секрета жизни. Нет, именно ДНК даст нам ключ, который позволит узнать, каким образом гены определяют в числе прочих свойств цвет наших волос и глаз, а также, что весьма вероятно, степень наших умственных способностей и, может быть, даже нашу способность быть душой общества. [c.16]

    Важную роль В жизнедеятельности играют комплексы белков с нуклеиновыми кислотами — нуклеопро-теиды. Из нуклеопротеидов состоят, в частности, хромосомы, важнейшие составные части ядра клетки, ответственные за хранение наследственной информации, а также рибосомы — мельчайшие частицы протоплазмы, в которых происходит синтез белковых молекул. [c.451]

    Профаг PI не единственный обладатель системы сайт-специфической рекомбинации, необходимой для стабильного наследования. Такие же системы есть у многих других плазмид. В связи с этим необходимо отметить, что к кольцевым репликонам относится также бактериальная хромосома, при упорядоченной сегрегации которой также могут возникать сложности, аналогичные описанным выше для фага Р1 (см. рис. 70). На этом основании можно предположить возможность наличия сайт-специфической системы реко.мбинации, мономеризующей бактериальную хромосому перед делением клеток. [c.106]

    Рекомбинационные процессы играют также ведущую роль в эволюции строения гено.мов в цело.м. Дело в том, что перестройки генетического материала часто можно объяснить реко.убинацией. между гомологичными последовательностями, оказавшимися в негомологичном положении (роль таких последовательностей могут выполнять, напри.мер, мобильные генетические эле.менты см. гл. V). На рис. 81 (с.ч. с. 126) показан один важный частный случай ошибочной реко.мбинации — неравный кроссинговер. В результате этого процесса генетический материал одной из гомологичных хро.мосом делетн-рует, но в другой хромосоме возникает дупликация. Считается, что такие дупликации играют важную роль в возникновении родственных, но различных генов, поскольку присутствие в геноме лишних копий какого-либо гена позволяет и.м сравнительно свободно из.че-няться, что, в принципе, может привести к возникновению новых функций белка — продукта гена. По всей вероятности, это один из путей возникновения. мультигенных семейств, характерных для геномов высших эукариот и кодирующих белки со сходными, но различными функциями. [c.109]


    Процессы метилирования несомненно участвуют в инактивации одной из двух Х-хромосом в клетках млекопитающих. Неактивное состояние одной из двух Х-хромосом, возникающее в раннем развитии эмбриона, цитологически обнаруживается по наличию компактного гетерохроматического тельца Барра. Это неактивное состояние наследуется в клеточных поколениях, а реактивация Х-хромосомы происходит при образовании герминальных клеток. Путем деметилирования с помощью 5-азацитидина также удавалось активировать гены неактивной Х-хромосомы. По-видимому, инициация инактивации Х-хромосомы обеспечивается взаимодействием со специфическими белками, а метилирование — это вторичный процесс, закрепляющий неактивное состояние Х-хромосомы в последующих клеточных делениях. [c.220]

    Деконденсацию хроматина прн транскрипции можно также наблюдать с помощью светового микроскопа на политенных хромосомах дрозофилы. Такие хромосомы содержатся во многих тканях личинок насекомых. Политенные хромосомы дрозофилы состоят примерно из 1000 нитей ДНК, лежащих рядом друг с другом таким образом, что гомологичные участки соседствуют и образуют поперечные полоски. Политенные хромосомы соответствуют интерфазному хроматину. Каждый функциональный домен в политенной хромосоме представлен Б виде диска, содержащего плотно-упакованную ДНК. Диски разделены менее плотными междисковыми участками. Чередование дисков и междисков образует характерную строго постоянную картину, причем крупные генетические перестройки проявляются в видимых изменениях хромосом. В ходе индивидуального развития личинок картина дисков и междисков несколько меняется. Но особенно ярко изменения транскрипционной активности хроматина политенных хромосом проявляются при индукции генов. Такая индукция достигается, например, при нагревании личинок (так называемый тепловой шок) или при введении гормона насекомых экдизона. При активации транскрипции происходит резкая деконденсация хроматина в определенных дисках и образуются так называемые пуфы. В пуфах можно обна- [c.252]

    Выщепление профага из клеточной хромосомы — это также результат сайт-специфнческой рекомбинации, но на этот раз между участка.ми ВОР и РОВ, которые на.ходятся на концах интегрированной вирусной ДНК (рнс. 149). Особенность реакции выщеп-ления — потребность в дополнительном белке, продукте фагового гена xts. Такая потребность возникает вследствие того, что фаговая интеграза сама по себе слабо взаимолейсгвует с участком РОВ.  [c.284]

    В вирусной РНК записана информация для синтеза по крайней мере трех групп вирус-специфических белков структурных белков сердцевины вириона (Qag-белков), ферментативных белков, принимающих участие в обратной транскрипции вирусного генома и в интеграции вирус-специфической ДНК и клеточной хромосомы (продуктов гена pol), и белков, входящих в состав наружной липо-протеидной оболочки вириона (Env-белков). У некоторых ретровирусов есть дополнительные гены нередко наблюдаются также всякого рода перестройки генома, что обычно ведет к дефектности вируса, т. е. к его неспособности размножаться без вируса-помощника. [c.309]

    Несмотря на то что сейчас выяснены лишь некоторые ключевые моменты тех химических процессов, которые лежат в основе всех этих явлений, использование температурочувствительных мутантов и тестов на комплементацию поможет установить суммарное число генов, принимающих участие в этих процессах, а также локализацию этих генов в хромосоме Е. oli. В ряде случаев это может способствовать более полному пониманию биологического явления. [c.255]

    Продукт гена N делает возможной также и правостороннюю транс-, крипцию через гены О, и Q и далее уже с меньшей скоростью вдод ь остальной хромосомы до точки а. Гены О и детерминируют синтез белков, позволяющих репликационной системе бактерии-хозяина начать образование новых молекул фаговой ДНК. Репликация начинается в точке ori и протекает в обоих направлениях, как это описано в разд. Д. Ген Q детерминирует синтез белка, который значительно ускоряет транскрипцию поздних генов, начиная с промотера Pr. [c.261]

    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]

    В хромосоме Е. oli содержится ДНК длиной больше 1 мм, упакованная в клетке, длина которой пе превышает 2 мкм. Длина диплоидной ДНК, содержащейся в клетках человека, размер которых не превышает 20 мкм, достигает 1,5 м. Расплетание двойных спиралей ДНК в репликационных вилках требует быстрого вращения цепей (разд. А, 3,а). Хотя с чисто химической точки зрения процесс расплетания 3000 оснований за одну секунду не представляет проблемы, все же трудно представить себе, как две копии реплицируемой хромо-со.мы даже в клетках Е. oli могут разделяться, не запутываясь. Частично ответить на этот вопрос можно, если вспомнить о существовании ДНК-расплетающпх белков (разд. Д, 5, в), а также ДНК-релаксирую-щих , или раскручивающих , ферментов [185, 186] (см. также рис. 2-27). Важную роль играет при этом также организация хромосомы. [c.271]

    Скорость репликации в этих ядрах оказалась равной приблизительно 300 000 оснований в одну секунду, причем, согласно данным, полученным в этой же работе, репликационные внлки в хромосомах животных не могут двигаться быстрее, чем со скоростью - 50 оснований в секунду. Таким образом, можно было ожидать, что в хромосоме имеется как минимум 6000 вилок или одна вилка на 10 000 оснований. И такое большое число вилок в действительности удалось обнаружить [191]. Вилки появляются попарно, причем при внимательном изучении оказалось,, что во многих коротких участках содержится одноцепочечная ДНК, т. е. как будто бы одна цепь в вилке реплицируется быстрее другой. Строение одноцепочечных областей между двумя образуюш,ими пары вилками указывает на двустороннюю направленность репликации (рис. 15-29). Репликация в случае Ba illus subtilis также протекает в двух направлениях, однако вилки перемещаются в двух направлениях с разной скоростью [192]. Репликация ДНК фагов X и Т7 также протекает в двух, направлениях [193], тогда как митохондриальная ДНК мыши реплицируется лишь в одном направлении [194]. [c.274]

    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    Первичные структуры а-, Р-, у-, 5-, е- и -полипептидных цепей Г. человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующие а-глобиновые цепи Г. человека, сцеплены и расположены в последовательности 42-4 - 2-а1 на хромосоме 16 (цифры-номера дуплицированных генов) группа генов, кодирующих др. полипептидные цепи, также непосредственно примыкающие один к другому (8-72-71 -8-Р), локализована на хромосоме 11. Первичная структура а- и не а-глобиновых генов человека известна. Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов. Биосинтез гема, а- и р-глоби-новых цепей, а также сборка тетрамерных молекул НЬА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120-130 дней) из костного мозга в кровяное русло. [c.516]

    К М.г.э. прокариот относят также умеренные фаги. Х-Фаги (лямбдоидные фаги) обычно встраиваются в одно место хромосомы, но при определенных условиях могут располагаться и в др. участках генома, ц-Фаги способны включаться в любые места бактериальной хромосомы, а также в ДНК мн. др. фагов и плазмид. Интеграция лямбдо-идных фагов обеспечивается ферментной системой, состоящей из клеточных белков и белков, кодируемых геномом фага. [c.79]

    Наиб, изучена мол. организация т.наз. мобильных дис-пергир. генов (МДГ) дрозофилы, построенных также по типу транспозонов. Известно неск. семейств МДГ. Все они имеют много общих св-в это множественные видоспецифичные активно транскрибируемые гены, локализация к-рых на хромосомах варьирует не только у разных линий дрозофилы, но даже у разных особей одной линии. Все они содержат 5-7 тью. пар нуклеотидов и повторяются в геноме от 10 до 200 раз. Отличит, особенность МДГ-присутствие на их концах повторяющихся нуклеотидных последовательностей (250-500 пар), имеющих прямую ориентацию. Считается, что МДГ способны перемещаться в результате синтеза РНК-копии и последующей ее обратной транскрип- [c.80]


Смотреть страницы где упоминается термин также хромосома: [c.130]    [c.73]    [c.252]    [c.453]    [c.356]    [c.185]    [c.203]    [c.251]    [c.257]    [c.257]    [c.258]    [c.259]    [c.261]    [c.267]    [c.287]    [c.300]    [c.218]    [c.79]   
Переключение генов (1988) -- [ c.20 , c.21 , c.22 , c.61 , c.62 , c.63 , c.64 , c.65 , c.66 , c.69 , c.70 , c.71 , c.72 , c.73 , c.74 , c.75 , c.86 , c.87 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте