Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки-рецепторы инсулина

Рис. 12-25. Размеры и локализация каталитических доменов некоторых протеинкиназ, рассмотренных в этой главе. Во всех случаях каталитический домен (выделен цветом) состоит примерно из 250 аминокислотных остатков и имеет сходную аминокислотную последовательность это позволяет предполагать происхождение их всех от общего предшественника. Три представленные здесь тирозин-специфические киназы-трансмембранные белки-рецепторы, которые при связывании специфического внеклеточного лиганда активируются и фосфорилируют ряд белков внутри клетки (в том числе и самих себя) по остаткам тирозина. Обе цепи рецептора инсулина кодируются одним геном, продукт которого - белок-предшественник - расщепляется на две цепи, связанные дисульфидными мостиками. Внеклеточная часть рецептора PDGF, по-видимому, сложена в пять иммуноглобулиноподобных доменов - возможно, этот белок относится к суперсемейств> иммуноглобулинов (разд. 18.6.20). Регуляторные субъединицы А-киназы (см. рис. 12-27) и киназы фосфорилазы (см. рис. 12-31), в норме Рис. 12-25. Размеры и локализация <a href="/info/1403720">каталитических доменов</a> некоторых протеинкиназ, рассмотренных в <a href="/info/1656236">этой главе</a>. Во всех случаях <a href="/info/1403720">каталитический домен</a> (выделен цветом) состоит примерно из 250 аминокислотных остатков и имеет сходную <a href="/info/31042">аминокислотную последовательность</a> это позволяет предполагать происхождение их всех от <a href="/info/1405442">общего предшественника</a>. Три представленные здесь <a href="/info/1339530">тирозин-специфические</a> киназы-<a href="/info/166982">трансмембранные белки</a>-рецепторы, которые при <a href="/info/104411">связывании специфического</a> внеклеточного лиганда активируются и фосфорилируют ряд белков <a href="/info/1409039">внутри клетки</a> (в том числе и <a href="/info/1080734">самих себя</a>) по остаткам тирозина. Обе цепи <a href="/info/99579">рецептора инсулина</a> кодируются одним геном, продукт которого - <a href="/info/525783">белок-предшественник</a> - расщепляется на две цепи, связанные <a href="/info/99352">дисульфидными мостиками</a>. Внеклеточная <a href="/info/1561444">часть рецептора</a> PDGF, по-видимому, сложена в пять иммуноглобулиноподобных доменов - возможно, этот <a href="/info/1748940">белок относится</a> к суперсемейств> иммуноглобулинов (разд. 18.6.20). <a href="/info/103082">Регуляторные субъединицы</a> А-киназы (см. рис. 12-27) и <a href="/info/100268">киназы фосфорилазы</a> (см. рис. 12-31), в норме

    Известно, что направленность и тонкая регуляция процесса передачи информации обеспечиваются прежде всего наличием на поверхности клеток рецепторных молекул (чаще всего белков), узнающих гормональный сигнал (см. Рецепторы инсулина). Этот сигнал рецепторы трансформируют в изменение концентраций внутриклеточных посредников, получивших название вторичных мессенджеров, уровень которых определяется активностью ферментов, катализирующих их биосинтез и распад. [c.289]

    Химический синтез полипептидов и белков имеет большое теоретическое и практическое применение. Пептидные модели широко используются для изучения белок-белковых и белково-нуклеиновых взаимодействий. Некоторые гормоны являются пептидами и необходимы в больших количествах для медицинских целей. Некоторые из них, а именно инсулин и вазопрессин, были описаны в 2.1. Огромный интерес к синтетическим пептидам возник, когда открыли большую группу пептидов мозга. Первыми были открыты метионин-энкефалин Tyi—Gly Gly ihe—Met и лейцин-энкефалин Tyi—Gly Gly he—Leu. Эти два пептида связываются с теми же мозговыми рецепторами, что и опиаты, например морфин. Таким образом, их можно использовать вместо морфина в качестве анальгетика. Основное достоинство этих пептидов заключается в том, что опасность привыкания к ним существенно ниже, чем к морфину. [c.283]

    Ряд систем трансмембранной передачи сигнала содержит рецепторы, обладающие каталитической активностью. Рецептор инсулина (РИ) представляет собой тиро-зиновую протеинкиназу, т. е. протеинкиназу, фосфорилирующую белки по ОН-группе остатков тирозина. Он построен из двух а-субъединиц и двух Р-субъединиц первые расположены целиком вне клетки, на ее поверхности, а вторые пронизывают плазматическую мембрану (рис. 7,20). Центр связывания инсулина образуют К-концевые домены а-субъединиц. Каталитическая субъединица РИ (Р-субъе-диница) содержит короткий внеклеточный домен, трансмембранный домен и большую внутриклеточную часть. Каталитический Тир-протеинкиназный центр [c.217]

    После связывания инсулина с рецептором возможны два типа эффектов быстрые (секунды-минуты) — трансмембранный транспорт, фосфорилирование белков, активация и ингибирование ферментов, транскрипция генов медленные (часы) — синтез белков, репликация ДНК, пролиферация клеток. Основные эффекты инсулина представлены в таблице  [c.390]

    Описываемый механизм гарантирует достаточно высокую избирательность, но имеет сравнительно низкую скорость. Для большинства белков и функциональных молекул константа скорости ассоциации не превышает 10 л моль с . Скорость ассоциации достаточно велика и достигает 10 л -моль (для трипсина и ингибитора трипсина) и 10 л моль (для инсулина и рецептора инсулина). [c.179]


    Последние отделяются от аппарата Гольджи, перемещаются к цитоплазматической мембране, ассоциируются с ней, и инсулин секретируется в кровяное русло. Скорость секреции гормона определяется концентрацией глюкозы и ионов Са в крови. Адреналин подавляет освобождение инсулина, а такие гормоны, как ТТГ и АКТГ, напротив, способствуют его секреции. В крови инсулин находится в двух формах свободной и связанной с белками, преимущественно с трансферрином и а,-глобулином. Время полужизни инсулина составляет около пяти минут, причем распад начинается в крови, так как в эритроцитах имеются инсулиновые рецепторы и довольно активная инсулин-деградирующая система. [c.165]

    Функциональная роль полипептидных цепей. Если молекула рецептора построена из нескольких различающихся по строению полипептидных цепей, их вклад в организацию активного центра рецептора, равно как участие в реализации эффекторных свойств, может быть неодинаков. Это положение иллюстрируют данные о строении рецептора инсулина. Одна из цепей этого белка (а) участвует в образовании активного центра, в то время как другая (Р) отвечает за эффекторные свойства рецептора. В других рецепторных белках разноименные полипептидные цепи совместно участвуют в формировании активного центра рецептора (см. табл. 1). [c.15]

    Биологические мембраны представляют собой плоские структуры шириной порядка 75 А, которые состоят из молекул белков и липидов, удерживаемых вместе нековалентными связями. Мембраны служат барьерами проницаемости с высокой степенью избирательности. Они отграничивают замкнутые пространства (компартменты) в виде целых клеток или субклеточных органелл. Встроенные в мембраны насосы и каналы регулируют молекулярный и ионный состав этих компартментов. Мембраны регулируют также обмен информацией между клетками. В частности, на некоторых мембранах находятся рецепторы гормонов, например рецепторы инсулина. Кроме того, мембраны непосредственно участвуют в таких процессах превращения энергии, как фотосинтез и окислительное фосфорилирование. [c.222]

    Па долю рецепторов инсулина приходится всего лишь 4 10 % общего количества мембранных белков в гомогенате печени. Следовательно, чтобы получить в чистом виде 1 мг б елка-рецептора, необходимо подвергнуть обработке количество гомогената, эквивалентное 500 г белка, а для этого нужно взять печень от 200 крыс. Этот расчет показывает, что вьщеление рецепторов в количестве, достаточном для определения последовательности аминокислот, рентгеноструктурного анализа [c.293]

    Представители мембранных Р.б., обладающие собств. ферментативной активностью,-рецепторы инсулина и разл. факторов роста. Эти Р.б.-протеинкиназы (регулируют активность разл. белков путем их фосфорилирования), фосфорилирующие белки по остаткам тирозина. Специфич. гормоны стимулируют протеинкиназную активность н ауто-фосфорилированйе молекул рецепторов, что необходимо для преобразования ими регуляторных сигналов. [c.263]

    В последнее время появились данные о том, что аденилатциклазная система может активироваться не только при стимуляции рецепторов, связанных с G-белками, но и при активации рецепторов, имеющих собственную тирозинкиназную активность (рецепторы инсулина и эпидермального фактора роста) (Плеснева и др., 1996). Так, в цитоплазматическом домене -субъединицы инсулинового рецептора выявлены два участка связывания с Gj и G, белками (Шпаков, 1996). [c.15]

    Паратгормон — белок, состоящий из 84 аминокислот (ММ 9500 Да), вырабатывается в паращитовидных железах. Низкая концентрация кальция в крови (менее 1,1 ммоль/л) вызывает синтез и секрецию гормона, высокая — ингибирует оба процесса (синтез и сгкрецию). В паращитовидных железах сравнительно мало накопительных гранул, и количество гормона в них может обеспечить максимальную секрецию лишь в течение 1,5 ч (для сравнения, в островковом аппарате поджелудочной железы инсулина достаточно для нескольких дней секреции, а запаса гормонов в щитовидной железе — на несколько недель). Именно поэтому биосинтез паратгормона должен быть постоянным. Периферический протеолиз паратгормона протекает главным образом в купферовских клетках печени, Органы-ми-шени кишечник, кости, почки. Проникающий гормон, действует в клетках-мишенях по аденилатциклазному механизму. В клетках почек и кости имеются мембранные рецепторы к паратгормону — простые белки с молекулярной массой 70 ООО Да. В кишечнике паратгормон усиливает всасывание кальция (косвенное действие через [c.416]

    В последнее время появились данные о том, что рецептор инсулина может взаимодействовать с гетеротримерными С,- и С -белками. В тирозинкиназном домене рецептора инсулина идентифицирован фрагмент (аминокислоты 1135-1156), с которым связываются С-белки. Этот фрагмент содержит 3 остатка тирозина, которые подвергаются аутофосфорилированию. На адигюцитах крысы обнаружено, что инсулин стимулирует связывание С,-белка (с мол. массой 41 кДа) с рецептором инсулина (Jo et al., 1993). [c.60]

    Очень много усилий было затрачено на то, чтобы выявить внутриклеточный посредник инсулина. В качестве кандидатов на эту роль рассматривали целый ряд соединений сАМР, сСМР, Н ОСаи сам инсулин. Неоднократно сообщалось об обнаружении в тканевых экстрактах тех или иных медиаторов — производных белков или фосфолипидов, но до сих пор ни один из них не выделен и не охарактеризован. Недавно было обнаружено, что рецептор инсулина обладает собственной тирозинкиназной активностью это вызвало интерес к поиску каскада реакций фосфорилирования, на основе которых можно было бы объяснить механизм действия инсулина. Указан- [c.168]


    А. Рецептор инсулина. Действие инсулина начинается с его связывания со специфическим гликопро-теиновым рецептором на поверхности клетки-мишени. Различные эффекты этого гормона (рис. 51.15) могут проявляться либо через несколько секунд или минут (транспорт, фосфорилирование белков, активация и ингибирование ферментов, синтез РНК), либо через несколько часов (синтез белка и ДНК и клеточный рост). [c.259]

    При анализе методов, используемых для выделения клеточных рецепторов, обращает на себя внимание стремление к применению максимально щадящих методов на стадии элюции рецептора с сорбента. Так, применение сорбентов с иммобилизованными лактинами для очистки рецептора инсулина продиктовано прежде всего стремлением избежать воздействия на рецепторный белок растворов с низкими значениями pH, концентрированных растворов амидов (мочевина) или других денатурирующих белок веществ. В то же время в кислой среде (или с применением денатурирующих агентов) производится элюция с иммобилизованных лигандов (антигены или гаптены) различных по специфичности антител, не приводящая к их инактивации. Различие подходов к способам элюции клеточных рецепторов и антител (иммуноглобулины) с иммобилизованных лигандов, выбранных эмпирическим путем, связано с конформационнон лабильностью рецепторных белков. Так, для ряда изученных к настоящему времени рецепторов (например, рецептор для эпидермального фактора роста) характерны выраженные изменения конформации при переходе из нейтральной в слабокислую среду (см. гл. 3). [c.11]

    Помимо рецептора инсулина существуют другие симметрично построенные белки, проявляющие асимметрию относительно сродства их активных центров к лиганду. Так, в молекуле неполного антитела (ввиду отсутствия у него преципитирующих и агглютинирующих свойств) только один нз активных центров имеет высокое сродство к детерминантной группе антигена. Причина асимметрии реце. тора инсулина (неполное антитело) по степени сродства к лиганду пока еще не выяснена. [c.18]

    Ознакомьтесь с рис. 4.4 и решите задачу. Инсулин, присоединяясь к своему рецептору, активирует реакции... В результате этой модификации р-протомеры рецептора могут... белки и ферменты цитозоля. Одним из таких ферментов является фосфопротеинфосфатаза, которая отвечает за реакции... Кроме этого, активированный рецептор инсулина вызывает изменение конфор- [c.368]

    На основании приведенных выше данных можно предположить, что шарнирные участки содержатся в каждом рецепторном белке и имеют определяющее значение для реализации его функции. Накоплению фактических данных по этому вопросу могут способствовать, в частности, данные, полученные с использованием ферментов, расщепляющих коллаген и подобные ему по строению белки. Так показано, что а-цепи рецептора инсулина чувствительны к расщеплению эластазой (J. Massague et al., [c.21]

    Немногочисленные сведения о катаболизме рецепторных белков свидетельствуют в пользу того, что после сбрасывания с клеточной поверхности (или в ходе этого процесса) рецепторы подвергаются протеолитическому расщеплеиию подобно другим белкам. При этом следует разграничивать процессы интернализации и катаболизма рецепторов. В гл. 1 рассматривали судьбу клеточных рецепторов, интернализация которых обусловлена лигандом или протекает спонтанно. Прямые экспериментальные данные, полученные при изучении рециклирования рецепторов инсулина, указывают на то, что в ходе интернализации и последующей реэкспрессии рецептора не происходит каких-либо изменений в его строении (Bin Tao Pan, Johnstone, 1984). Это может означать, что процессы рециклирования и катаболического распада рецепторов разобщены. [c.82]

    Попав окружение здоровых клеток, фрагменты рецепторов и антирецепторов, появившиеся первоначально в очаге патологического процесса, способны оказать влияние на метаболизм неповрежденных клеток как в непосредственной близости от очага процесса, так и в других органах и тканях. При этом следует иметь в виду, что самые разнообразные клетки помимо характерных для их конкретной функции потребностей имеют также и сходные потребности в самых разнообразных метаболитах, индукторах и медиаторах обмена веществ. Поэтому в спектре специфичностей / -белков всегда присутствуют такие фрагменты рецепторов и антирецепторов, которые способны оказать негативное влияние на клетки любой органной локализации. Так, все без исключения клетки организма нуждаются в глюкозе, потребление которой через посредство своего рецептора обеспечивает инсулин (см. разд. 2.3). Если в окружении здоровых клеток возрастет содержание изолированных внеклеточных участков рецепторов инсулина, последние, перехватывая инсулин, лишают клетку возможности достаточно эффективно потреблять глюкозу. Последствием только этого события станут серьезные нарушения метаболизма самых разнообразных клеток, не находящихся непосредственно в очаге патологического процесса. [c.96]

    Рецептор инсулина представляет собой тирози-новую протеинкиназу (ТП), т.е. протеинкиназу, фосфорилирующую белки по ОН -группам тирозина. Рецептор состоит из 2 а- и 2 Р-субъединиц, связанных дисульфидными связями и нековалентными взаимодействиями, а- и р-Субъедини-цы являются гликопротеинами с углеводной час- [c.108]

    Предполагается, что пептидные гормоны (инсулин, пролактии, гормон роста, паратиреоидный гормон, гонадотропин, гормоноподобные факторы роста и др.) также могут проникать через клеточную мембрану внутрь клетки [575]. Это предположение уже выдвигалось в 50-х годах двумя группами исследователей, но эндокринологи настаивали на концепции взаимодействия пептидных гормонов исключительно лишь со связанными с мембраной рецепторами. Согласно современным воззрениям, такие трудноин-терпретируемые долговременные эффекты, как, например, влияние на рост клетки и белковый синтез в случае инсулина, Можно объяснить, лишь принимая возможность проникновения гормона в клетку. Кратковременные эффекты могут быть вызваны, по существующему представлению, обычным путем, т. е. взаимодействием с рецептором, связанным с мембраной. Относительно процесса входа в клетку существуют различные точки зрения, как, например, совместное действие высокомолекулярного белка-носителя (а2-макроглобулин для инсулина или эпидермального фактора роста) или совместное с рецептором клеточной стенки проникновение гормона в клетку. Но в общем случае ясность в вопросе о функциях полипептидного гормона в клетке пока отсутствует. Дискуссируются следующие предположения  [c.235]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Главное действие некоторых гормонов направлено на плазматическую мембрану клеток-мишеней. Под термином рецептор обычно понимают компоненты плазматических мембран, которые вовлечены во взаимодействие с данным гормоном. Они, ио-види-MOiMy, локализованы исключительно на поверхности мембранных клеток. Для того чтобы выяснить действие гормонов на молекулярном уровне, необходимо очистить и идентифицировать эти специфические мембранные рецепторные структуры, количество которых в тканях очень мало по сравнению с другим присутствующим материалом. Например, концентрация рецептора глюкагона в мембранах клеток печени очень низка и составляет 2,6 пмоль в 1 мг белка [30]. При столь малых количествах взаимодействие с иммобилизованными гормонами должно быть очень эффективным, чтобы обеспечить прочное связывание крупных мембранных фрагментов. Взаимодействие гормонов с их комплементарными рецепторами специфично и характеризуется высоким сродством. Константа диссоциации для глюкагона равна 10 —10 ° моль/л, для инсулина—5-10 " моль/л, а для норэпи-нефрина—10 —10 моль/л [35]. Очень трудно выделять такие малые количества стандартными методами. Использование биоспецифической хроматографии а высокоэффективных иммобилизованных рецепторах позволяет избирательно концентрировать [c.122]

    В клетках млекопитающих недавно был обнаружен другой тип передачи сигнала. В этой сигнальной системе роль второго посредника играет инозитол-трифосфат (рис. 42.21) его внутриклеточная концентрация регулируется внеклеточными сигналами, опосредованными трансмембранным рецептором. На поверхности большинства клеток млекопитающих располагаются специфические рецепторы для целой группы белков—факторов роста, таких, как инсулин, эпидермальный фактор роста и фактор роста, происходящий из тромбоцитов. При связывании соответствующей молекулы эффектора с рецептором на цитоплазматической стороне мембраны стимулируется киназная активность, присущая интегральному компоненту трансмембранной молекулы рецептора. Под действием этой активности происходит фосфорилирование фосфатидилинозитола до фосфатидилинозитол-4-фосфата, а последнего до фосфатидилинозитол-4,5-бисфосфата. Интересно, что некоторые онкогены, экспрессия которых может приводить к малигнизации клеток, также индуцируют киназную активность, приводящую к образованию таких полифосфатидилинозитидов (гл. 57). [c.145]


Смотреть страницы где упоминается термин Белки-рецепторы инсулина: [c.270]    [c.369]    [c.153]    [c.364]    [c.153]    [c.364]    [c.10]    [c.18]    [c.70]    [c.27]    [c.354]    [c.369]    [c.598]    [c.68]    [c.68]    [c.166]    [c.58]    [c.66]    [c.149]    [c.27]    [c.226]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.59 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулинома



© 2025 chem21.info Реклама на сайте