Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент в теплообменных аппаратах

    Выравнивание потока ускоряется при наличии сопротивления, рассредоточенного по сечению. При этом, как будет показано ниже, чем больше коэффициент сопротивления распределительного устройства тем значительнее степень выравнивания скоростей, и чем короче устройство, тем меньше протяженность пути, на котором происходит растекание потока по сечению. Постепенное выравнивание поля скоростей по сечению имеет место, например, в пластинчатых электрофильтрах (если вход потока в межэлектродные пространства этих аппаратов осуществляется с одинаковыми средними скоростями, хотя и с неравномерным для каждого пространства профилем скорости), в полых скрубберах и в других аналогичных аппаратах. Более быстрое, но также постепенное выравнивание поля скоростей происходит, например, при внешнем обтекании нескольких пучков труб в теплообменных аппаратах, при обтекании изделий в сушилах, в промышленных печах и др. [c.73]


    Тепловой расчет кожухотрубчатых холодильников не отличается от расчета теплообменных аппаратов и сводится к определению коэффициента теплопередачи и с]юдней разности температур. [c.158]

    Местные сопротивления в трубной зоне теплообменного аппарата и в коммуникациях (входная и выходная камеры, вход непосредственно в трубы и выход из них, поворот между ходами, различные переходы и др.) вызывают дополнительные потерн давления. Значение коэффициентов местных сопротивлений зависит от типа местных сопротивлений и их геометрических характеристик, а иногда и от скорости потока. Например при повороте потока внутри пучка на 180 с = 2, на 90 — с = 1. на 45° — с = 0,5. Величину можно найти по графикам и таблицам, приведенным в соответствующей литературе (например, [1,28, 120]) [c.251]

    Отложения в теплообменных аппаратах могут быть двух видов твердые — окалина, накипь, продукты коррозии металла, кокс и др. пористые — рыхлый кокс, тина, грязь, коксовая пыль, сажа и др. Эти отложения снижают коэффициент теплопередачи и, как следствие, температуру нагрева сырья на выходе из теплообменника. Чтобы поддержать коэффициент теплопередачи на должном уровне, загрязненный пучок теплообменных труб периодически очищают от отложений. Обычно для однотипных теплообменников используют запасной пучок теплообменных труб, заменяя им загрязненный. [c.271]

    Среди требований, предъявляемых к теплообменным аппаратам, следует указать основные соблюдение условий протекания технологического процесса высокий коэффициент теплопередачи малые гидравлические сопротивления устойчивость против коррозии легкость чистки поверхностей нагрева технологичность конструкции с точки зрения ее изготовления экономичное использование материалов. [c.183]

    Для отвода конденсата и предотвращения проскока пара в линию отвода конденсата теплообменные аппараты, обогреваемые насыщенным водяным паром, должны снабжаться конденса-тоотводчиками [6]. Расчет в подбор стандартного поплавкового конденсатоотводчика по ГОСТ 15112—69 заключается в определении диаметра условного прохода Оу (в мм) по максимальному коэффициенту пропускной способности к (в т/ч)  [c.24]

    Метод Белла. В основе метода Белла лежит представление схемы теплообменного аппарата в виде ряда элементов из идеальных пучков труб с чисто поперечным потоком теплоносителя без байпасного потока и протечек. Эти элементы соединены между собой окнами (вырезами перегородок). При расчете коэффициента теплоотдачи вначале рассматривается основной поток теплоносителя с чисто поперечным омыванием пучка труб, затем продольное движение потока через вырезы перегородок и учитываются все возможные протечки через зазоры. Рекомендуется следующая последовательность расчета коэффициента теплоотдачи. [c.237]


    Корректный метод расчета теплоотдачи в межтрубной зоне теплообменного аппарата непременно должен включать учет влияния протечек теплоносителя и отложений на величину а . Для расчета коэффициента теплоотдачи при поперечном обтекании пучков труб [1, 28, 82, ИЗ, 131, 144] имеется большое число уравнении. Некоторые из них [82, 131, 144] можно обобщить  [c.237]

    Стоимость теплообменной аппаратуры принимается пропорциональной массе теплообменного аппарата при заданных коэффициенте теплопередачи и температуре хладоагента  [c.103]

    Работа теплообменных аппаратов характеризуется общим коэффициентом теплопередачи К, который определяется расчетным путем [в ккал/(м -ч-°С)]. [c.180]

    Расчет теплообменного аппарата ведут применительно к выбранной конструкции и размерам теплообменника, выпускаемого промышленностью, поскольку для определения коэффициента теплопередачи необходимо располагать данными о скорости движения теплообменивающихся сред. [c.266]

    Однако на этой стадии расчета точное определение коэффициента теплопередачи невозможно, так как а и 2 зависят от параметров конструкции рассчитываемого теплообменного аппарата. Поэтому сначала на основании ориентировочной оценки коэффициента теплопередачи приходится приближенно определить поверхность и выбрать конкретный вариант конструкции, а затем провести уточненный расчет коэффициента теплопередачи и требуемой поверхности. Сопоставление ее с поверхностью выбранного нормализованного теплообменника дает ответ на вопрос о пригодности выбранного варианта для данной технологической задачи. При значительном отклонении расчетной поверхности от выбранной следует перейти к другому варианту конструкции и вновь выполнить уточненный расчет. Число повторных расчетов зависит главным образом от степени отклонения ориентировочной оценки коэффициента теплопередачи от его уточненного значения. Многократное повторение однотипных расчетов предполагает использование ЭВМ. Следует, однако, иметь в виду, что трудоемкость повторных расчетов вручную резко снижается по мере выявления характера зависимости коэффициентов теплоотдачи от параметров конструкции аппарата. [c.21]

    Если в теплообменном аппарате в качестве теплоносителей используются две жидкости с при.мерно одинаковыми теплофизическими свойства.ми, то равные коэффициенты теплоотдачи. могут быть получены при равных скоростях течения жидкостей. [c.208]

    В промышленных условиях при охлаждении литиевых смазок коэффициент теплопередачи составляет 600—650 Вт/(м -К), что примерно в 20 раз выше, чем в трубчатых теплообменных аппаратах. Перспективным и эффективным для нагревания и охлаждения смазок в непрерывных схемах является змеевиково-скребковый аппарат. [c.99]

    Изложенная методика определения Д ср справедлива при уело- ВИИ, что водяные эквиваленты обоих теплоносителей и коэффициент теплопередачи практически не меняются вдоль поверхности нагрева. Если это условие яе выполняется, то теплообменный аппарат необходимо рассчитывать по участкам, для которых эти величины можно принять постоянными (подробно см. [Л. 20]). [c.20]

    Для определения поверхности теплопередачи и выбора конкретного варианта конструкции теплообменного аппарата необходимо определить коэффициент теплопередачи. Его можно рассчитать с помощью уравнения аддитивности термических сопротивлений на пути теплового потока  [c.20]

    В уравнении (4. 16) коэффициент теплоотдачи а является переменной величиной и зависит от многих факторов, например от физических свойств жидкости, скорости движения последней, конструкции теплообменного аппарата и др. Кроме того, указанные выше факторы должны быть увязаны между собой. Это создает определенные трудности при нахождении коэффициента теплоотдачи а даже опытным путем. [c.56]

    Необходимо отметить, что из уравнения (4. 33) следует если Д/(5 = О или Aim = О, то и Д<ср = О, т. е. теплообмен отсутствует. Формулы (4. 33) и (4. 34) применяются при условии, что в теплообменном аппарате остаются постоянными по всей поверхности 1) значение коэффициента теплопередачи к 2) произведение весового расхода на теплоемкость Ge для каждой из сред (рабочих жидкостей). [c.67]

    Коэффициент теплопередачи К. в теплообменных аппаратах [c.274]

    Чаще всего употребляется коэффициент технического использования. Для аппаратов, применяемых на нефтеперерабатывающих заводах, коэффициент технического использования составляет 85—98%. Ниже представлены значения основных показателен надежности теплообменных аппаратов  [c.55]

    Пластинчатые теплообменные аппараты характеризуются высоким коэффициентом теплопередачи благодаря высокой турбулентности потока, малой ширине зазора между пластинами и рифлению на них. [c.33]

    Исходные данные расчетов расходы и температуры теплоносителей, их физические свойства, форма и размеры теплопередающей поверхности и всего аппарата, материальное исполнение элементов аппарата, живые сечения и размеры каналов по ходу теплоносителей, площадь и масса аппарата, схема тока теплоносителей в аппарате, ряду и комплексе, термические сопротивления загрязнений, зазоры (протечки), расчетные ограничения, коэффициенты запаса поверхности, допустимые погрешности расчета и пр. Все конструктивные данные соответствуют стандартам (или нормалям) теплообменных аппаратов. Они подготовлены в виде компактных таблиц для одного типоразмера аппарата (ограниченный проектный расчет) либо для возможного набора типоразмеров (полный проектный расчет). Характерная структура полных проектных расчетов (шифр БС-ПР) приведена на рис. 6 (см. Приложение 9). [c.37]


    Расчет коэффициента теплоотдачи в межтрубной зоне теплообменного аппарата представляет весьма трудную задачу. В литературе имеются лишь ограниченные сведения по методам расчета промышленных аппаратов со сложной структурой потока теплоносителя. Наличие поперечных перегородок вызывает многократное изменение направления потока, а различные зазоры (между корпусом аппарата и перегородками, перегородками и трубами пучка, байпасный канал между корпусом и пучком) обусловливают существование протечек теплоносителя. [c.236]

    В завнсимости от конструкции теплообменного аппарата и наличия дополнительных перегородок в межтрубном пространстве по соответствующей кривой на рис. 74 определяется коэффициент С при данной величине внутреннего диаметра О, корпуса теплообменника, [c.245]

    При решении задачи проектирования из предварительных расчетов определены коэффициенты в стоимостной функции Ц а = = 150, Ь = 0,6 (для кожухотрубчатых теплообменных аппаратов)  [c.254]

    Иногда порядок расчета кожухогрубчатых теплообменников изменяют. В этом случае в интересах интенсификации процесса теплообмена сначала определяют размеры корпуса аппарата, а потом производят расчет трубчатки. Это предпринимается для того, чтобы, независимо ог числа трубок в трубном пучке, создать оптимальные условия теплоотдачи в межтрубном пространстве, задавшись необходимой для данного расхода теплоносителя площадью сечения межтрубного пространства. Скорость течения теплоносителя внутри трубок в этом случае (а следовательно, и значение коэффициента теплоотдачи в трубках) может корректироваться изменением числа ходов по трубному пространству аппарата. При этом увеличение числа ходов в теплообменном аппарате, имеющем определенное число трубок, приводит к у.меньшению числа трубок в одном ходе, а следовательно, к увеличению скорости течения теплоносителя в них. В многоходовых теплообменниках все количество жидкости, поступающее в трубное пространство, проходит сначала одну группу трубок, затем при помощи перегородок, отлитых или заваренных в крышках аппарата, поворачивается и поступает в другую группу трубок и т. д. (фиг. 108). [c.210]

    Выбор теплообменных аппаратов, предназначенных для работы в заданных условиях, производится с использованием каталогов, имеющихся в банке данных. Первоначально, исходя из граничных значений коэффициентов теплопередачи для заданного типа аппарата, рассчитываются граничные значения поверхности теплообмена. Затем, начиная с минимального значения поверхности, из каталога выбираются конструктивные данные аппаратов и производится их тепловой расчет. Если в процессе расчета нарушается какое-либо из условий по скоростям или режимам течения жидкости, то происходит переход к соседней по значению поверхности группе аппаратов. Эта процедура повторяется до тех пор, пока не будет выбран теплообменник с относительной точностью по поверхности менее чем 0,2 м. Если не удается достигнуть заданной точности, то необходимо перейти к другому типу теплообменников или проектированию нестандартного оборудования. [c.387]

    Ребристые трубы находят широкое применение при изготовлении теплообменной аппаратуры. При использовании ребристых элементов труб успешно решается большинство проблем, связанных с нагревом, охлаждением и конденсацией сред. Применение ребристых и ошипованных элементов труб экономически целесообразно в таких теплообменных аппаратах, в которых условия теплообмена с одним теплоносителем существенно хуже, чем с другим. В этих случаях, увеличивая поверхность труб со стороны оребрения или ошипования, удается компенсировать низкий коэффициент теплоотдачи ео стороны газа и, следовательно, интенсифицировать процесс теплообмена, уменьшить вес, габариты и стоимость теплообменной аппаратуры, а также эксплуатационные расходы. [c.151]

    После синтеза оптимальной структуры теплообменной системы и определения технологических и конструкционных параметров теплообменных аппаратов, входящих в эту схему, анализируется синтезированная схема теплообменной системы. Для каждого теплообменника рассчитываются скорректированные выходные температуры потоков, обусловленные выбором стандартного аппарата с учетом коэффициента запаса поверхности. Если в результате анализа рассчитанные выходные температуры исходных потоков отличаются от заданных, следует синтезировать систему теплообменников при новых значениях тепловых нагрузок и минимально возможном сближении температур на концах аппарата. [c.82]

    Основы теплообмена рассматривались в гл. 9, где было показано, что скорость теплового потока зависит от относительной величины движущей силы и сил сопротивления процессу теплообмена. Основными уравнениями теплового расчета теплообменных аппаратов являются уравнения теплового баланса и теплообмена, решаемые совместно. При этом учитываются следующие три сопротивления сопротивления пограничного слоя потоков, обмениваю щихся теплом (сопротивление пленки ) и сопротивление твердой стенки, раз делающей эти потоки. Передача тепла в этом случае осуществляется одновре менно теплопроводностью и конвекцией. Скорость теплообмена между потоком и твердой стенкой принято характеризовать с помощью коэффициента теплоотдачи а. Для двух потоков, разделенных стенкой, уравнение теплообмена имеет вид  [c.155]

    Вопрос о том, тепло каких потоков выгодно регенерировать, должен решаться в каждом конкретном случае в зависимости от температуры п количества того или иного потока. Важно также правильно выбрать степень регенерации тепла па установке. Обычно ущ,ествует некоторая оптимальная степень регенерации тепла, являющаяся наиболее экономичной. С углублением регенерации тепла увеличивается поверхность теплообменных аппаратов, возрастает температура отходящих дымовых газов в печн и снижается коэффициент полезного действия печи, вследствие чего может увеличиться расход топлива.В конечном счете экономия от снижения расхода воды па охлаждение и расход металла на холодильники может оказаться меньше, чем дополнительные затраты на топливо и по-ыерхность теплообмена. [c.145]

    В качестве примеров математических моделей теплообменных аппаратов ниже проанализированы модели теплообменников простейших типов, в которых осуществляется передача тепла между двумя потоками — теплоносителем и хладоагентом. Во всех математических описаниях предполагается, что движение потоков теплоносителя и хладоагента характеризуется простейшими гидродинамическими моделями идеальное смешение и идеальное вытеснение . Кроме того, допускается, что коэффициент теплопередачи через стенку, разделяющую теплоноситель и хладоагеит, является постоянной заданной величиной, которая не зависит от их объемных расходов. Последнее допущение, строго говоря, неточно однако оно принято в дальнейшем для упрощения математических выкладок при решении задач оптимизации. [c.62]

    Значения поправочного коэффициента г з для рааличных схсм движения теплоносителей приведены на графиках рис. 1-1—1-11, где они даны в зависимости от характера взаимного направления потоков рабочих сред. При каждом из графиков и-меетоя соответствующая схема движения рабочих сред. Штриховка на этих схемах указывает на разделение потоков рабочих рред на отщельные ст>руи. Рис. 1-7, например, соответствует перекрестному пластинчатому теплообменному аппарату, рис. 1-8 —пучку труб, рис. 1-9 —одной трубе в поперечном потоке. [c.16]

    Величину коэффициента теплопередачи к примем из практических данных по материалам обследования аналогичных теплообменных аппаратов (см. табл. 5. 1) равной 100 ккал1м ч град. [c.73]

    Предварительно мазут нагревается в теплообменных аппаратах от температуры h = 20 С до 2 = 220 С. Коэффициент регенерации тепла па установке f per =54,5%. Температура отходящих из конвекционной камеры дымовых газов [c.121]

    На рис. 1.42 дапы графики для определения поправочного коэффициента е для типовых кожухотрубных теилообменников Коэффициент теплопередачи. Этот показатель характеризует интенсивность процесса теплопередачи в теплообменном аппарате. В отсутствие загрязнений коэффициент теплопередачи /([Вт/(м--К)1 определяют из соотношения [c.115]

    В пластинчатом теплообменнике коэффициенты теплопередачи выше, чем в кожухотрубчатом. Это происходит из-за малой величины зазоров между пластинами, рифления пластин (это создает искусственную турбуляцию потоков), а также благодаря гибкости пластинчатых теплообменников, дающей возможность осуществлять такую схему ходов, которая позволяет максимально использовать преимущество противоточного движения рабочих сред. Все это приводит к уменьшению капитальных затрат на пластинчатый теплообменный аппарат (по сравнению с кожухотрубчатым). [c.29]

    Полученные ранее критерии tie, щ, могут быть использованы при сравнении различных теплоносителей. С этой задачей встречаются при выборе теплоносителя для охлаждения атомных реакторов, для различных теплообменных аппаратов, а также при выборе рабочих тел для замкнутых циклов, например ЗГТУ. Обычный путь решения этой задачи — сравнение результатов расчета вариантов, полученных при использовании различных теплоносителей. Однако результаты такого сравнения существенно зависят от принятых тепловых схем, условий сопоставления и рассматриваемых консттрукций. Поэтому прежде чем сравнивать показатели вариантов с различными теплоносителями, целесообразно предварительно провести сопоставление свойств непосредственно самих теплоносителей для оценки перспективы их возможностей и достижимых показателей при различных параметрах. Основой такого сопоставления может служить разработанная выше методика сравнения поверхностей при условии постоянства конфигурации каналов и их пространственного расположения в решетке, что приводит к условию 112= 1- К роме того, смена теплоносителя в аппарате не влияет на коэффициент gx, т. е. gx2/gxi = l (здесь индекс 1 означает заданный, а 2 — исследуемый теплоноситель. Отсюда следует, что результаты сравнения для Q, F, N w Q, X, N характеристик аппарата будут одними и теми же. Это упрощает общее решение задачи. [c.102]

    В литературе рассматривались частные случаи, которые могут встретиться в практике конструирования теплообменных аппаратов. Так, в [45] исследовалось продольное обтекание в зоне действия закона Блазиуса для коэффициента трения, кроме того, считалось, что С>=сопз1. [c.126]

    Здесь лишь кратко остановимся на характерной структуре расчетов при оптимальной замене действующих теплообменных аппаратов (рис. 13). Обозначения, принятые в структуре Пктр, Пкгр — признаки корректировки (расчета коэффициентов адекватности) теплового и гидравлического расчетов (О — корректировки нет, 1 — корректировка проводится) Пор — признак организации расчета (О—проводится оптимизирующий расчет, 1 — подготавливается корректировка) БС — РЭПДТ — структура расчета эксплуатационных показателей действующего оборудования. [c.50]

    В уравнении (10,8) значение коэффициента С находится в пределах от 0,2 [131] до 0,26 [144] со сртоней величиной 0,25. Однако это уравнение, как и другие [28, 133], недостаточно пригодно для расчета теплообмена в межтрубной зоне промышленных теплообменных аппаратов, так как оно не учитывает влияния зазоров и геометрии межтрубного пространства па теплообмен. [c.237]

    Метод Девора. Тинкер [153] разработал метод расчета тепло отдачи и гидравлического сопротивления в межтрубном прост рансгве кожухотрубчатых теплообменных аппаратов. Предложен ный им метод дает хорошие результаты, однако расчетные урав нения содержат большое число поправочных коэффициентов определяемых геометрией межтрубного пространства и величиной зззоров в нем. [c.242]

    Коэффициент теплоотдачи, полученный по методу Беллл, составил 1900 Вт/м . град, а по методу Девора — 1475 Вт/м град (без учета поправки на длину кэнцавых участков). Расхождение между двумя величинами не очень велико и можно считать, что оба метода дают сопоставимые результаты при расчете коэффициентов теплоотдачи в межтрубном пространстве. Из всех известных методов расчета теплоотдачи в межтрубной зоне кожухотрубчатых теплообменных аппаратов только методы Белла и Девора дают возможность учитывать влияние протечек теплоносителя через все виды зазоров. [c.247]


Смотреть страницы где упоминается термин Коэффициент в теплообменных аппаратах: [c.201]    [c.55]    [c.72]    [c.73]    [c.117]    [c.249]    [c.295]    [c.151]   
Основные процессы и аппараты химической технологии (1983) -- [ c.20 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Теплообмен коэффициенты



© 2024 chem21.info Реклама на сайте