Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент теплопередачи для гладких труб

    Для гладкой наружной поверхности трубы коэффициент теплопередачи равен [c.449]

    Теплообменники типа труба в трубе применяются при небольших количествах теплообменивающихся потоков. Наиболее удачной оказалась конструкция такого аппарата с использованием внутренней оребренной трубки. Помещая трубку с короткими спиральными ребрами (рис. 104, б) внутрь гладкой трубки большего диаметра удается обеспечить высокие коэффициенты теплоотдачи. Это достигается за счет интенсивной циркуляции в полостях между ребрами при их поперечном обтекании потоком, движущимся вдоль оребренной поверхности. Коэффициент теплопередачи такого аппарата находится по формуле (161), коэффи-13  [c.195]


    Коэффициент теплопередачи гладких труб определяется в зависимости от разности температур между температурой воздуха в камере и температурой испарения. [c.105]

    Линейный коэффициент теплопередачи для гладкой трубы с учетом ее загрязнений [c.249]

    Общий коэффициент теплопередачи такой трубы в 3 раза выше, чем у такой же трубы без ребер. Сравнительные испытания проводили для конденсации пара с температурой 113°С, конденсат охлаждался до 50 °С охлаждающая вода имела температуру 20 °С и скорость 3 м/с [609]. Эксплуатация конденсаторов с оребренными трубами началась с 1982 г. За это время никаких проблем, вызванных коррозионными повреждениями, не возникало [610]. Исследования коррозионного поведения оребренных труб в растворах различных кислот и хлористого натрия показали, что они не только не уступают по коррозионной стойкости, в том числе и к щелевой коррозии, гладким трубам, но даже несколько превосходят их. Это объясняется положительным влиянием холодной деформации в процессе нанесения ребер [610]. [c.260]

    Пример. Рассчитать коэффициент теплопередачи гладко-. трубной двухрядной батареи непосредственного испарения, если == — 18° (ро = 98% /о = — 28° трубы 0 57 X 3,5 мм отноше- [c.120]

    Коэффициент теплопередачи от горячего катализатора к паро-водяной смеси для гладких чистых труб равен примерно 80 ккал/м час град. [c.119]

    Коэффициент теплопередачи. В конденсаторах, изготовленных в виде горизонтальных пучков гладких круглых труб, где скорости пара достаточно высоки, коэффициент теплопередачи определяется в основном скоростью охлаждающей воды в трубах. [c.250]

    При расчете теплопередачи учитывают общую поверхность ребер и трубы. Сначала вычисляют на основе обычных уравнений коэффициент теплопередачи при прямом токе. Затем вводят поправочный множитель на коэффициент теплопередачи только для поверхности ребер. Этот поправочный множитель,, графически представленный на рис. 10, известен под названием к. п д. оребрения он учитывает изменение эффективности ребер в зависимости от геометрической формы, теплопроводности металла и общего пленочного коэффициента для наружной поверхности. Среднелогарифмическую разность температур для конвекционной секции с оребренными поверхностями вычисляют так же, как и для конвекционной секции с гладкими трубами. [c.60]

    На рис. 13.4 представлена зависимость коэффициента теплопередачи от скорости воды для чистых гладких новых горизонтальных труб при отсут- [c.250]


    Пример 13.1. Конденсатор мощной паровой турбины. Весьма полезно рассмотреть типичные проблемы, возникающие на первой стадии проектирования конденсатора, такие, как оценки его размеров, веса, стоимости. Для примера выберем конденсатор паровой турбины мощностью 225 ООО кет, подобный изображенному на рис. 13.3. Результаты расчетов приведены в табл. 13.3. Сначала в таблицу заносятся технические условия. Остальные величины рассчитываются или выбираются. Во всех случаях подход к проблеме полностью согласуется с приведенным выше анализом. Например, температура пара на входе и воды на выходе была принята выше значений температуры воды иа входе соответственно на 12,34 и 8,33° С. К коэффициенту теплопередачи, взятому по рис. 13.4 для чистой гладкой трубы, была введена поправка на загрязнение в соответствии с табл. П3.4, так как охлаждение производится водой из пруда — охладителя. [c.253]

    Линейный (отнесенный к 1 пог. м) коэффициент теплопередачи вт/ м-град), для гладкой трубы с учетом ее загрязнения определяется по формуле [c.492]

    В аппаратах с оребренными трубами коэффициенты теплопередачи, отнесенные к гладкой и оребренной поверхностям, отличаются в несколько раз. Это различие обусловлено как различием площадей поверхностей Р и / ви> так и изменением температуры по высоте ребра. Если эффективность ребер Е = 1 (медные накатные ребра малой высоты), расчет можно осуществлять по формуле (У.4) или (У.5). Если Е < 1 (оребренные воздухоохладители, воздушные конденсаторы), то в выражениях (У.4) и ( /.5) вместо а и ав необходимо подставлять приведенный коэффициент теплоотдачи той среды, которая омывает оребренную поверхность [c.83]

    Проведенные в лаборатории Брянского института транспортного машиностроения исследования показали, что маслоохладители с проволочным оребрением дают средний коэффициент теплопередачи (отнесенный к гладкой поверхности труб) примерно в 10 раз больше коэффициента теплопередачи существующих трубчатых теплообменников. Не меньшую эффективность дают пластинчатые теплообменники с турбулизирующими выступами. Серьезным затруднением в эксплуатации таких теплообменников является опасность быстрого загрязнения асфаль-то-смолистыми отложениями (асфальтами, карболенами, карбидами), особенно при подогреве высоковязких крекинг-мазутов. [c.342]

    Исследования показали, что при движении потока в гладких трубах и каналах конвективный коэффициент теплоотдачи при прочих равных условиях в два и более раза ниже, чем при внешнем обтекании круглых труб и тел другой формы. В связи с этим возникает вопрос, возможно ли за счет преимуществ внешнего обтекания достичь значений коэффициентов теплоотдачи, характерных для развитого турбулентного режима, в области ламинарного и переходного режимов течения. С этой целью были проведены исследования теплоотдачи и сопротивления элементов с двуугольными каналами малых эквивалентных диаметров. Опыты проводились на аэродинамической установке разомкнутого типа. Воздушный поток создавался воздуходувкой производительностью 250 м 1ч и напором 3500 мм вод. ст. Исследования проводились на одиночных элементах, обогреваемых кипящей водой и состоящих из двух профильных листов шириной приблизительно 100 мм, длиной 180—200 мм. При этом, как показали визуальные наблюдения, в слое воды, прилегающем к стенке элемента, происходит интенсивная циркуляция пароводяной эмульсии, что обеспечивает высокие значения коэффициентов теплоотдачи со стороны кипящей воды и, как следствие этого, постоянную температуру стенок элементов, равную температуре насыщенного пара. Вследствие того, что коэффициенты теплоотдачи со стороны кипящей воды большие, тепловым сопротивлением от воды к стенке пренебрегали. Коэффициент теплоотдачи со стороны воздуха принимали равным коэффи-циенту теплопередачи. Результаты опытов обрабатывались в критериях подобия  [c.38]

    Первое приближение. Примем значение коэффициента теплопередачи С/в = = 312 Вт/(м2-°С). Принятое значение в расчете на единицу полной наружной поверхности оребренной трубы с низкими ребрами меньше, чем для гладкой трубы. Это является следствием того, что термические сопротивления с внутренней стороны трубы должны будут умножаться на большие значения отношения площадей наружной и внутренней поверхностей трубы, тогда как все остальные факторы, такие, как скорости и сопротивления загрязнения, остаются теми же. Средневзвешенная эффективность оребренной поверхности незначительно уменьшает эффективный коэффициент теплоотдачи от потока в межтрубном пространстве к трубе  [c.366]

    Существенное уменьшение удельного расхода металла можно получить при применении различных модификаций секционных подогревателей типа труба в трубе с гладкими и оребренными трубами [11,12]. Применение оребрения позволяет увеличить коэффициент теплопередачи в 2—2,5 раза. При этом вследствие уменьшения числа последовательно включенных секций гидравлическое сопротивление возрастает не очень существенно. По-видимому, для очистки оребренных труб от загрязнения может оказаться эффективным применение моющих растворов МЛ [13] или абразивной суспензии [14]. Однако опыт применения оребренных подогревателей для нагрева современных топочных мазутов в настоящее время отсутствует. [c.218]


    Это положение типично для конвекционных секций, оборудованных толстостенными гладкими трубами. Для достижения достаточно высокого коэффициента теплопередачи проектировщик должен предусмотреть большие весовые скорости дымового газа между рядами труб, что в свою очередь требует уменьшения свободного сечения между трубами. Если, наоборот, принять более низкую весовую скорость с тем, чтобы можно было увеличить свободное сечение до величины, при которой можно допустить некоторое загрязнение поверхностей, то для сохранения неизменной суммарной тепло- [c.62]

    В связи с применением подогрева воздуха отходящими дымовыми газами требуется оценить ряд важных сопутствующих факторов, относящихся к расчету и эксплуатации печи. Применение подогрева воздуха для достижения заданного к. п. д. устраняет необходимость в использовании конвекционных поверхностей. В результате этого все рабочие поверхности печи могут эксплуатироваться со сравнительно высокими коэффициентами лучистого теплообмена вместо относительно низких коэффициентов теплопередачи, преобладающих в низкотемпературной зоне конвекционных секций, оборудованных гладкими трубами. При подогреве воздуха общая поверхность неоребренных (гладких) труб обычно меньше, чем требуемая в оборудованных гладкими трубами печах радиантно-конвекционного типа. В тех случаях, когда требуются печные трубы из дорогостоящих легированных сталей, экономия на материале труб может в значительной степени компенсировать дополнительные капиталовложения на оборудование для подогрева воздуха. В случаях же, когда лимитирующим фактором является потеря напора жидкого потока при его движении по трубам, весьма важную роль могут играть уменьшение поверхности печных труб и сокращение длины печного змеевика, достигаемые в результате подогрева воздуха. [c.65]

    Уменьшение диаметра труб приводит к повышению коэффициента теплоотдачи, который для ламинарного потока обратно пропорционален сй Г, а для турбулентного — йЦ. В кожухотрубных испарителях переход с йа = 50 мм на вн = 20 мм привел к повышению коэффициента теплоотдачи для ламинарного потока на 35 %, а для турбулентного — на, 20 %. Намечается дальнейшее снижение диаметра труб, которое ограничено уменьшением их механической прочности и возрастанием опасности засорения. Возможности интенсификации теплообмена этим путем невелики. Так, при снижении диаметра гладкой трубы с 20 до 15 мм коэффициент теплоотдачи увеличивается на 6—10 %, а коэффициент теплопередачи — примерно на 3—5 %. Однако снижение диаметра труб увеличивает компактность аппарата. [c.100]

    Коэффициент теплопередачи для аммиачных батарей из гладких труб при разности температур воздуха и аммиака 10° С составляет 7— [c.90]

    Расчеты теплообменников для фреоновых машин производят после определения соответствующей тепловой нагрузки. Коэффициент теплопередачи поверхности змеевика из гладких труб, отнесенный к внутренней поверхности, принимают в пределах 200—250 ккал м час С. [c.125]

    Коэффициенты теплопередачи рассольных батарей из гладких труб к = [c.191]

    Усредненные коэффициенты теплопередачи наружной поверхности аммиачных батарей однорядных и двухрядных из оребренных труб диаметром 38 и 57 мм с высотой ребра 45 мм принимают по табл. XVI—2 из гладких труб диаметром 57 мм — по табл. XVI—3, [c.416]

    Коэффициенты теплопередачи для аммиачных батарей из гладких труб можно принимать по табл. 15, для ребристых батарей— по табл. 17. Для фреоновых ребристых батарей коэффициент теплопередачи можно принять равным 4—5 ккал м -ч-град). [c.186]

    Коэффициент теплопередачи к для батарей из гладких труб может быть принят по табл. 15, для ребристых батарей — по табл. 17. [c.189]

    При испытании гладкотрубных батарей установлено, что в первые дни работы батарей, коэффициент теплопередачи также значительно снижается, а затем он почти не изменяется. Это объясняется тем, что у гладких труб с увеличением слоя инея возрастает тепловоспринимающая поверхность, что компенсирует ухудшение теплопроводности стенки от нарастающего слоя инея кп =0,4 ккал м -ч-град). У оребренных батарей нарастание слоя инея не сопровождается пропорциональным увеличением тепловоспринимающей поверхности. [c.189]

    Трубы с переменным по длине сечением, получаемые соответствующей обработкой обыкновенных труб, обеспечивают турбу-лизацию потока и увеличение интенсивности теплообмена. Так же как в случае турбулизирующих вставок, в трубах с переменным сечением обеспечивается переход в турбулентную область при меньшем, чем в гладкой трубе, значении критерия Рейнольдса и соответствующее увеличение коэффициента теплопередачи. Последнее наблюдается в ламинарной и переходной областях,и мало заметно в области интенсивной турбулентности. [c.263]

    Коэффициенты теплопередачи для гладкой трубы  [c.553]

    Для этих условий а = 0,985 кВт/(м -К), т. е. близко к значениям для десяти- и пятиканальных труб в табл. VI-7. Однако коэффициент теплопередачи, отнесенный к наружной поверхности трубы, здесь равен 0,535 кВт/(м -К), что на 40 % ниже соответствующей величины для десятиканальной трубы, хотя и превышает примерно на 40 % коэффициент теплопередачи гладкой трубы. [c.161]

    Учет влияния загрязнений теплопередающей поверхности на процесс теплопередачи особенно важен при высоких значениях 1 (со стороны газа), что имеет место при высоких давлениях. В уравнениях (9.11) и (9.12) для определения коэффициента теплопередачи влияние загрязнений учитывается комплексами б,/Я,1 и В практических расчетах отношения бх/кх и 62А2 заменяют значениями тепловых сопротивлений и Тогда уравнение для определения коэффициента теплопередачи примут вид для гладкой трубы [c.258]

    Для гладких труб коэффициент теплопередачи составляет 13—20 тыс. Bт/(м K), для внутреннеоребренных (в виде гофр) 60—90 тыс. Вт/(м2-К) при применении в качестве рабочего тела воды. В ряде стран разрабатываются новые конструкция аппаратов. Предполагаемый срок службы аппаратов — до 15 лет. Экономичнее применять алю ми иевые трубы, чем стальные. Сроки окупаемости аппаратов от 1,7 до 3,6 лет, иногда 5 лет (известны случаи окупаемости за 3 месяца). [c.72]

    Увеличение снеговой шубы на ребристой поверхности батарей приводит к неуклонному уменьшению коэффициента теплопередачи. При этом наиболее заметно он снижается в первые 10—15 дней нарастания снеговой шубы- Так, за 94 дня испытаний, проведенных ВНИХИ с сребренными рассольными батареями, установлено, что вследствие нарастания снеговой шубы коэффициент теплопередачи, отнесенный к гладкой внутренней поверхности труб батарей, понизился с 20,4 ккал (м -ч-срад) до 13,8 ккал (м -ч-град), т. е. на 34%, причем за первые 15 дней г понизился на 9%, а за последующие 50 дней — на 8%, затем за 30 ней к снизился еще на 17%.. [c.189]

    Конструкция охлаждающего элемента с ребристой со стороны слоя поверхностью представлена на рис. ХП-52. Гладкая горизонтальная труба ( = 42X5 мм) имела круглые ребра диаметром 120 н толщиной 8 мм с шагом между ребрами 40 мм. После непрерывной эксплуатации в течение 10 мес. элемент находился в удовлетворительном состоянии. Коэффициент теплопередачи к потоку нагреваемой воды в элементах без оребрения составил 230— 260 ккал (м ч град) в сребренных трубах эта величина возрастает до 550—570 ккал (м- ч град) в расчете на поверхность гладкой трубы. [c.566]

    Предпочтение отдают вертикально-трубным змеевикам [66], так как блоки из горизонтальных элементов ухудшают массообмен и перемешивание в нсевдоожиженном слое, вызывая образование Ja тoйныx зон материала иод охлаждающими элементами вертикально-трубные блоки (рис. ХП 53) не нарушают аэродинамики слоя и обеспечивают практически постоянную температуру по всему слою прп высокой производительности аппарата. Показано также, что при переработке гранулированных материалов и высоких тепловых нагрузках в случае применения горизонтальных элементов, в отличие от вертикальных, наблюдается снижение коэффициентов теплопередачи. Однако применение вертикальных змеевиков в виде гладких и оребренных труб сопряжено с трудностями вследствие образования в перегибах паровых пробок и прогорания змеевика. [c.566]

    Расход воздуха на сжигание 1 кг кокса, кг/кг. . . Продолжительность пребывания катализатора, мин. Коэффициент теплопередачи от катализатора к паро-водя ной смеси для гладких труб, ккал/(м Ч-град). . Интенсивность выжигания кокса, кг1л слоя в 1 ч. Теплоемкость, ккал кг-град) [c.166]

    Коэффициенты теплопередачи аммиачных и рассольных батарей из горизонтальных гладких труб диаметром 57x3,5 мм даны в табл. 15. [c.182]


Смотреть страницы где упоминается термин Коэффициент теплопередачи для гладких труб: [c.148]    [c.201]    [c.94]    [c.38]    [c.61]    [c.201]    [c.61]    [c.315]   
Теплопередача (1961) -- [ c.214 , c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент теплопередачи

Теплопередача



© 2024 chem21.info Реклама на сайте