Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепные развитие цепи

    Реакция Нз + Вгг является классическим примером цепных реакций, протекающих с участием двух активных центров. В случае реакции Нз+Вгг активными центрами являются атомы и Н и Вг, которые принимают участие в развитии цепи. [c.293]

    Отметим, что эта реакция является главным путем очень быстрого цепного разложения чистой жидкой ди-т/)ет бутилперекиси. Наоборот, отсутствие развития цепей по реакции 7 может быть приписано быстрой рекомбинации радикала с СН3 с образованием трет-амил-терет-бутилперекиси  [c.322]


    Химическая сенсибилизация этого типа встречается очень часто. Для того чтобы автокатализ активными центрами приводил к постоянно увеличивающейся скорости реакции, механизм должен быть таким, чтобы развитие цепи само вызывало увеличение концентрации активных центров. Подобные цепные реакции, как уже упоминалось, называются разветвленными цепными реакциями, и они, по-видимому, обычны для систем, в которых происходит окисление. Реакция О2 -f Н2 при температуре выше 400° включает следующие элементарные стадии  [c.382]

    Общее правило при выводе таких выражений заключается в том, что суммарные скорости образования промежуточных продуктов принимаются равными нулю в настоящем примере это относилось к скорости образования атомарного водорода. В цепных реакциях надо учесть, что скорость реакций обрыва цепи незначительна по сравнению со скоростью развития цепи. [c.74]

    Таким образом, под влиянием инициирующей реакции (I) возникают последовательно идущие один за другим циклы — развивается цепная реакция (развитие цепи)  [c.196]

    Сложные реакции. Механизмы реакций замещения октаэдрических и плоско-квадратных комплексов металлов. Цепные реакции. Стадия зарождения цепной реакции, стадия развития цепи, ингибирующая стадия и стадия, обрывающая цепь. Стационарное состояние. [c.350]

    Это уравнение, после его экспериментального установления, не удавалось объяснить в течение 13 лет. Затем почти одновременно это сделали три группы ученых, возглавляемые Г. Эйрингом, К. Герцфельдом и М. Поля-ни. Они высказали предположение, что реакция протекает по цепному механизму, включающему две стадии развития цепи  [c.385]

    По особенностям стадии развития цепи цепные реакции делятся на две группы неразветвленные цепные реакции, когда в процессе развития цепи число свободных валентностей в звене цепи остается постоянным, и разветвленные цепные реакции, когда развитие цепи идет с увеличением свободных валентностей в звене цепи. В качестве примера неразветвленной цепной реакции рассмотрим реакцию взаимодействия водорода с хлором. В темноте водород и хлор практически не взаимодействуют. Но при освещении системы солнечным светом реакция протекает со взрывом. Зарождение цепи происходит при поглощении молекулой С кванта энергии h  [c.605]

    В цепных реакциях промежуточные соединения образуются на первой стадии, называемой стадией зарождения цепи. Далее промежуточное соединение реагирует с исходным веществом, давая продукт реакции и новые частицы промежуточных соединений на стадии развития цепи. Время от времени промежуточные соединения расходуются на стадии обрыва цепи. Таким образом, имеем  [c.34]


    Наиболее важной частью цепной реакции является стадия развития цепи. На этой стадии общее число молекул промежуточных соединений не меняется. Следовательно, в реакциях цепного типа молекула промежуточного соединения может вызвать длинную цепь превращений исходных веществ, прежде чем образовать конечный продукт. [c.35]

    При неглубоком крекинге, в условиях, когда можно пренебречь вторичными реакциями полимеризации, ароматизации и др., а также влиянием продуктов крекинга на его течение, радикально-цепной процесс более прост и включает реакции зарождения радикалов, взаимодействия их с молекулами алканов и распада сложных радикалов — реакция развития цепей, составляющих цепной цикл, и, наконец, реакции обрыва цепей путем рекомбинации радикалов или захвата их стенками. Совокупность выще перечисленных реакций составляет основу первичного процесса термического радикально-цепного распада алканов. [c.5]

    Однако для понимания механизма радикально-цепного крекинг-процесса вопрос о том, являются реакции зарождения радикалов или торможения цепей гомогенными или гетерогенными, не только приобретает большое значение, но и оказывает существенное влияние на конкуренцию процессов диссоциации молекулы алкана на радикалы и молекулярные продукты. Гетерогенность реакции зарождения радикалов может не только существенно облегчить появление цепей в энергетическом отношении. С гетерогенностью реакции зарождения связана длина цепи и возможный другой механизм подавления цепей ингибиторами, когда последние действуют не на процесс развития цепей в объеме, а на процесс зарождения их на стенках. [c.47]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]

    Для развития радикально-цепного распада через промежуточное образование метил-радикалов кинетический расчет приводит к полуторному порядку валовой реакции распада метана. Для того чтобы совместить кинетику распада первого порядка, как этого требует опыт при давлении порядка 10 мм ртутного столба, с обрывом цепей тримолекулярным путем Н + Н -Ь М, как это было принято в радикально-цеп-ной схеме распада, отношение концентраций Н и СНз-радикалов должно быть гораздо больше 10 . Это не согласуется с тем, что атомарный водород не был обнаружен в опытах по идентификации радикалов [174]. Гипотеза о том, что распад метана идет посредством метил-радикалов, но без развития цепей, т. е. как радикальная реакция, также приводит к противоречию с опытом энергия активизации должна в этом случае быть порядка 100 ккал, как это найдено для реакции образования радикалов [174], тогда как из опыта для валового распада получено 79,4 ккал. [c.81]

    В работе [105] также был предложен вывод уравнения (3). Основой вывода является предположение о гетерогенном зарождении активных центров с последующим развитием цепного процесса в объеме и обрывом цепей только на стенках. Предполагается, что на поверхности имеются, по крайней мере, два типа активных центров адсорбции, на которых могут адсорбироваться молекулы алкана. В результате адсорбции молекул алкана на адсорбционных центрах А происходит необратимый распад на радикалы, один из которых выбрасывается в объем, а другой остается на поверхности, образуя с активным центром А снова активный центр AR. Последний способен не только адсорбировать молекулу алкана, но и подобно центру А на поверхности, вступать в необратимое химическое взаимодействие с другой скоростью, чем в случае центров А с выбросом радикалов в объем. Кроме этих процессов зарождения цепей, на стенках происходят реакции развития цепей в объеме и реакции обрыва цепей, которые состоят в рекомбинации радикалов на стенках на местах А и AR, адсорбировавших молекулы алкана. [c.122]


    Следовательно, цепная реакция при указанных условиях является более выгодной. Однако с повышением температуры цепная реакция становится менее выгодной и преобладает молекулярный механизм распада. На самом деле, найденное соотношение скоростей будет завышенным вследствие того, что цепная реакция тормозится продуктами распада, а на молекулярную реакцию продукты распада не влияют в условиях прохождения ее вдали от равновесия. Для других алканов рассмотренные условия окажутся еще более благоприятными с точки зрения развития цепей, и цепной распад будет преобладать над молекулярным. Правда, как мы увидим впоследствии, переход от Н-атомов к радикалам СНз несколько ослабит шансы цепной реакции. [c.128]

    Что касается величины х , то по расчетам она оказывается порядка 10- — 10- , а время, соответствующее и, следовательно, участку роста скорости в начале процесса, отвечает времени развития цепи от зарождения до гибели, имеющему порядок 10 мин. В соответствии сообщен концепцией неразветвленных цепей [34] из радик ьно-цепной кинетики крекинга алканов следует лишь тривиальный рост скорости на очень небольших участках малых глубин распада, обусловленный тем, что для развития стационарной средней длины цепи требуется некоторое небольшое время. [c.156]

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]

    В крекинг-процессе, как и во многих других радикально-цепных превращениях, реакции рекомбинации и диспропорционирования радикалов могут обрывать цепной процесс либо, если иметь в виду обратные стадии, генерировать его. Кинетические и термодинамические исследования этих радикальных реакций и реакций развития цепи, рассматриваемых в гл. II—VI, позволяют перейти к количественному описанию сложных процессов, протекающих по радикально-цепному механизму, и определению его важнейших кинетических параметров (порядка процесса, эффективной энергии активации и других). [c.71]

    Количественная проверка радикально-цепных схем термического распада алканов в условиях низких давлений и в присутствии задерживающих развитие цепей добавок приводит [378] к следующему уравнению для скорости распада различных алканов [c.221]

    Перейдем к обсуждению экспериментальных данных. Эффективный порядок радикально-цепного процесса по компонентам, как известно, зависит не только от скорости наиболее медленной реакции зарождения, но также от скоростей реакции обрыва и развития цепи. В частности, порядок реакции по алкану, равный 0,5, может быть следствием различных комбинаций соотношений скоростей реакций зарождения, развития и обрыва цепей. [c.228]

    Квантовый выход у может меняться от 10 до 10 . При у< 1 световая энергия, поглощаемая молекулами, частично расходуется ими на какие-нибудь побочные процессы, например на соударения с молекулами другого вещества, или она поглощается молекулами других веществ, iie участвующих в реакции. Квантовый выход может снижаться также вследствие самопроизвольного протекания обратного процесса. Отклонения в сторону y > 1 наблюдаются, если реакция является цепной. При этом поглощение молекулой одного кванта приводит к появлению активной частицы, вызывающей развитие цепи, и квантовый выход повышается до очень больших значений [c.362]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]

    Реакции, при протекании которых возникают промежуточные вещества с высокой энергией (радикалы), часто имеют механизм цепных реакций. Обычно в момент элементарного акта взаимодействия между активными молекулами появляются реакционноспособные промежуточные вещества — активные центры,—которые в свою очередь реагируют с компонентами реакционной системы, воспроизводят подобные себе частицы, в результате чего происходит циклическое повторение стадий реакции, Таким образом, возникает цепь реакций, так как после первичного акта цепной реакции появляется активная частица с высокой энергией (например, при воздействии излучения), которая продолжает последовательность стадий реакции. Такого рода процессы характерны прежде всего для реакций в газовой фазе (взрыв гремучего газа, реакция водорода с хлором), а также для некоторых реакций в растворах (фотохимические реакции, реакции полимеризации и т. д.). Возникновение реакционноспособной частицы часто называют реакцией зарождения цепи, например реакция (За) при образовании НВг (гл. 7). Под развитием цепи понимают последовательное продолжение элементарных стадий с постоянным образованием активных центров, продолжающих цепь радикалов. К реакциям обрыва цепи относится рекомбинация, т. е. реакция, обратная (За). Еще раз обратимся к уже описанному выше процессу образования бромоводорода (гл. 7). Для него найдена следую- [c.180]

    Всякая реакция может идти как путем простой перегруппн-ровки связей, так и цепным путем с образованием н участием в процессе свободных атомов и радикалов. Как уже было сказано, радикалы обладают большой реакционной способностью и, кроме того, при реакции одновалентного свободного радикала с молекулой свободная валентность не уничтожается, что обусловливает развитие цепей. [c.199]

    Цепные реакции в жидкой фазе большей частью протекают по механизму вырожденного разветвления, когда развитие цепей протекает через превращение относительно стабильного промежуточного продукта (или продуктов) реакции, что еще более затрудняет феноменологическое описание процесса. Случай жидкофазных цепных реакций с вырожденным разветвлением удобнее всего рассматривать па примере окпсленпя углеводородов, как наиболее типичном и изученном [24]. [c.43]

    При распространении пламени реакция также, как правило, протекает по цепному механизму. Рассматривая оановные закономерности этого процесса, можно не учитывать цепного характера реакции, тепловые факторы при горении являются определяющими. Сама цепная реакция не может протекать без соответствующего разогрева при низких температурах развитие цепи реакций прекращается и активные центры быстро превращаются в устойчивые конечные продукты. [c.27]

    Механизм действия. Действие антиокислителей в топливах основано на участии в процессах окисления углеводородов. Эти процессы развиваются по цепному механизму через свободные радикалы [6— 18], поэтому их развитие можно задержать, замедлив образование свободных радикалов или их последующие превращения. Антиокислители могут действовать несколькими путями, но всегда продукты, образующиеся из молекулы антиокислителя, должны быть менее активны, чем свободные радикалы, возникающие в системе и ведущие реакционные цепи. Во-первых, антиокислители могут взаимодействовать с алкильными радикалами, дающими начало окислительным цепям, предотвращая таким образом возникновение этих цепей [19]. Так действуют, например, хиноны [4, V. 1, сЬ. 4 17]. Во-вторых, анти-. окислители могут стехиометрически взаимодействовать с гидроперекисями [19], препятствуя образованию при их превращениях новых свободных радикалов, обуслов-. ливающих развитие цепей. Способность реагировать с молекулами гидроперекисей установлена для серосо- держащих антиокислителей, например диалкилсульфи-дов [11, 17, 18], производных меркаптобензтиазола и [c.69]

    Применение более низких величин энергий активации элементарных реакций развития цепей в прежних радикально-цепных схемах разложения этана не дает уже первого порядка для кинетики распада, хотя и сближает вычисленную и измеренную концентрации радикалов. После того, однако, как было показано, что реакция распада тормозится продуктами крекинга и скорость последнего описывается уравнением самозамедляющихся реакций <3), требование соблюдения первого порядка для кинетики процесса в целом, предъявляемое только к радикально-цепньш схемам, утратило смысл. Правильной является только та радикально-цепная схема распада, которая отражает самоторможение и удовлетворяет уравнению (3). [c.32]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Большой научный интерес представляют исследования инициированного крекинга, то есть термического распада алканов при температурах, когда сам по себе распад не происходит (практически скорость распада равна нулю) но его вызывают небольшие примеси инициаторов—соединейия, легко распадающиеся на радикалы при низких температурах. Эта форма крекинга возможна лишь в той мере, в кйкой распад имеет радикально-цепной характер. При пониженных температурах крекинг не происходит вследствие очень малой скорости реакции первичного распада алкана на радикалы. Вместе с тем понижение температуры более благоприятно для развития цепей. Поскольку остановка процесса при низких температурах связана с практически ничтожной скоростью реакции зарождения радикалов, то, вводя в зону крекинга небольшие количества соединений, легко распадающихся на радикалы, необходимые для развития термического распада, мы можем повысить до нужных значений концентрацию радикалов и ускорить крекинг принципиально до значений скорости, соответствующих обычным температурам крекинга. Однако понижение температуры всегда приводит к понижению скорости элементарных реакций, которые происходят с заметной скоростью лишь при высоких температурах. Это в первую очередь относится к тем реакциям развития цепей при крекинге, которые связаны с распадом тех или иных сложных радикалов. Скорость распада таких радикалов уменьшается с понижением температуры и, естественно, по- нижается и скорость цепного крекинга в целом. Таким образом, индуцирование термического крекинга алканов при помощи инициаторов в условиях, при которых aw по себе распад не происходит, непосредственно доказывает радикально-цепной механизм крекинга, поскольку не представляется возможным рассматривать индуцированный крекинг как одну из форм молекулярного (или гетерогенно-гомогенного) катализа. [c.62]

    Суммарная скорость радикально-цепного процесса и кинетическая длина цепи, фактически определяющие выход при данных физико-химических условиях, зависят от скоростей реакций зарожде ния, развития и обрыва цепи (см. гл. И). Скорость реакций зарождения цепи обычно можно регулировать подбором инициатора, температуры и других экспериментальных условий. Скорость реакций обрыва цепи не поддается прямому контролю, поэтому такие реакции являются серьезным ограничением процессов, текущих по радикально-цепному механизму. Реакции обрыва цепи (почти всегда реакции рекомбинации и диспропорционирования радикалов) имеют высокие константы скорости, вследствие чего интервал времени между инициированием и обрывом цепи невелик ( 1 с). Если в течение такого короткого времени происходит больщое число стадий развития цепи, то, очевидно, это является результатом малых концентраций радикалов (их встречаТимеет значительно меньшую вероятность, чем встреча радикала и молекулы), а также результатом особенностей протекания реакций развития цепи. Количественно эти особенности, а также конкуренция между реакциями описываются на основании данных о равновесиях и константах скорости этих реакций. [c.139]

    Использовались также необоснованные значения стерических факторов (5 л 1), что вносило В расчбты дополнительную неопределенность. Применение более низких значений энергий активации элементарных реакций развития цепи в прежних радикально-цеп-ных схемах разложения этана не приводит уже к первому порядку кинетики распада, хотя несколько сближает вычисленную и измеренную концентрации радикалов. Правильной следует считать только ту радикально-цепную схему, в которой отражено самоторможение (или торможение) и лишь при экстраполяции к х = О получается первый порядок. [c.217]

    Найденная таким образом скорость является скоростью полностью заторможенной реакции. О степени развития цепей при какой-либо реакции судят по действию добавляемой окиси азота на скорость реакции чем сильнее тормозится реакция добавляемой окисью азота, тем сильнее считаются развитыми цепные реакции, и наоборот. Отношение скоростей незаторможенной и полностью заторможенной реакций Стевли и Гиншельвуд (135) называют средней длиной цепи. Среднюю длину фактически образующихся реакционных цепей авторы называют абсолютной длиной цепи. Для некоторых углеводородов, нанример некоторых нафтенов и цикло-олефинов, нримесь окиси азота не оказывает замедляющего действия на скорость реакции крекинга. Отсюда можно заключить, что реакция разложения указанных углеводородов не носит цепного характера. [c.16]

    Критерии эти полностью приложимы к реакциям сгорания различных органических соединений. С точки зрения теории цепных механизмов, и спирты, и альдегиды, и перекиси могут принимать активное участие в развитии цепей при сгоран1ш углеводородов. [c.184]


Смотреть страницы где упоминается термин Цепные развитие цепи: [c.57]    [c.78]    [c.661]    [c.293]    [c.300]    [c.210]    [c.604]    [c.31]    [c.54]    [c.137]    [c.294]    [c.15]    [c.23]    [c.39]    [c.44]   
Кинетика и катализ (1963) -- [ c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Развитие цепи



© 2024 chem21.info Реклама на сайте