Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гранулы катализатора поверхность

    В работе [S2] показано, что зона максимального накопления ванадия лежит на гл иие 300-400 мкм от наружной поверхности гранулы катализатора, имеющего средний диаметр пор 11,5 нм, а в катализаторе со средним диаметром пор 7,65 нм в пределах 150-200 мкм. Длительность работы первого образца составила 285, а второго - 179 сут. Распределение никеля в зерне катализатора как и по высоте слоя, значительно равномернее (рис. 330). [c.123]


    Увеличение радиуса пор. Гранулы катализатора имеют поры разных диаметров. Относительно крупные поры рассматриваются как артерии или каналы к порам меньшего диаметра. С увеличением количества крупных пор внутренняя поверхность гранул катализатора становится более доступной для молекул кислорода воздуха. Скорость выхода из гранул молекул продуктов сгорания при этом также возрастает. Недостаточная механическая прочность катализаторов крупнопористой структуры является препятствием на пути использования их в современных системах крекинга [25]. [c.45]

    При использовании порошков в качестве исходного материала процесс формовки проводят на таблеточных машинах сухим прессованием гранул катализатора. Принципиальная кинематическая схема одной из таких машин приведена на рис. 248. Основными узлами машины являются круглый вращающийся стол /, в котором установлены матрицы, и блоки верхних 2 и нижних 3 пуансонов, которые вращаются синхронно со столом. Вал стола приводится от электродвигателя 4 через ременные 5 и зубчатые 6 передачи. Для перемещения пуансонов при их вращении вместе со столом на их концах установлены направляющие ролики 7 и 8, которые катятся по неподвижным направляющим 9 и 10. Исходная смесь поступает в матрицы из бункера-питателя в момент прохода отверстия матрицы под отверстием в дне бункера. Количество поступающей в матрицу смеси определяется глубиной погружения нижнего пуансона в матрицу. Последнюю регулируют положением питательного ролика 11, действующего на торец пуансона. Усилие прессования создает нажимной ролик 12, действующий на пуансоны в момент прессования. Готовая таблетка выталкивается нижним пуансоном в момент действия на него выталкивающего ролика 13. Для предотвращения создания заторов при наполнении матриц порошком в бункере-питателе установлена мешалка 14. Для очистки поверхности стола предусмотрены щетки 15. [c.290]

    Синтетические алюмосиликатные катализаторы более устойчивы при переработке сернистого сырья. Как правило, процессы формирования структуры этих катализаторов проводят при температуре прокаливания 700—800° С. Вследствие этого при регенерации катализатора при температурах, не превышающих 650° С, заметной дегидратации поверхности не происходит. Однако при переработке сернистого сырья происходит так называемое вторичное отравление катализатора продуктами коррозии аппаратуры. В процессе каталитического крекинга при переработке сернистого сырья или сырья, содержащего минеральные соли, в связи с большой подачей пара происходит интенсивная коррозия стенок аппаратов (реакторов и регенераторов). Продукты коррозии в виде сернистого железа, окислов железа и других соединений в мелкодисперсном состоянии захватываются потоком паров или газов и переносятся на катализатор. Они прочно удерживаются на внешней поверхности гранул катализатора, проникают в его поры и препятствуют доступу паров и газов к внутренней новерхности катализатора, т. е. снижают его дегидрирующую активность. Происходит необратимая потеря активности катализатора, так как простыми физическими методами эти отложения не удается удалить. [c.19]


    Независимо от типа катализаторов первичным актом химического превращения, протекающего на их поверхности, является адсорбция реагентов, поэтому активность гранулы катализатора зависит не только от химического состава активных компонентов, но и от структуры кристаллической решетки, конфигурации и размера пор и их распределения. Существенное значение имеют также эффекты, связанные с транспортом массы и тепла необходимо учитывать влияние возникающих градиентов концентраций и температур. Таким образом, необходимо детальное изучение адсорбционных процессов, сопутствующих химическим реакциям. [c.21]

    Расчеты проводятся на основе следуюш,их исходных данных g, В г — средний вес и диаметр единичной гранулы катализатора 5 — удельная поверхность пористого тела АУ/Д1д г — распределение объема пор по радиусу (рис. З.5.). [c.145]

    Насыпной вес или вес единицы объема характеризует форму и строение гранул катализатора. С уменьшением размера частиц и повышение.ч поверхности пор уменьшается насыпной. [c.12]

    Существенное влияние на величину D в катализаторах, содержащих узкие поры, оказывает распределение пор по размерам. При резко неоднородном распределении размеров пор само понятие эффективного коэффициента диффузии теряет определенность [8]. Представим себе частицу, свободный объем которой состоит из сети широких транспортных макропор и множества отходящих от них узких капилляров, работающих в кнудсеновской области. Зерна такой структуры, которые образуются при спрессовывании мелких микропористых гранул катализатора, находят себе широкое применение, поскольку они сочетают хорошо развитую внутреннюю поверхность с относительно высокой скоростью диффузии, обеспечиваемой системой транспортных макропор (см. главу V). Измерение величины D в подобном составном зерне (путем измерения скорости диффузии через зерно вещества, не вступающего в химические превращения) даст, очевидно, лишь величину D в макропорах. Между тем, химическая реакция, протекающая в основном в капиллярах, на которые приходится преобладающая часть внутренней поверхности катализатора, может лимитироваться гораздо более медленной диффузией в кнудсеновских микропорах. [c.101]

    Для катализаторов, работающих в кипящем и движущемся слоях, особую роль играет прочность к абразивному воздействию соседних частиц. В связи с этим структура, а также форма таких катализаторов в значительной степени определяются требованиями прочности. Широко распространен метод приготовления прочных к истиранию катализаторов путем коагуляции в капле, описанный подробно выше. В этом случае гранулы катализатора приобретают сферическую форму, гладкую поверхность и мало поддаются истиранию. Имеются сведения о производстве катализаторов для кипящего слоя сушкой гелевых суспензий или специальных масс в распылительных сушилках с получением микросферических частиц [45]. Наконец, при производстве катализаторов для кипящего слоя применяют высокопрочные носители типа корунда, алюмосиликагеля. Заполняя поры носителя активными компонентами путем пропитки раствором, расплавом или высокодисперсной суспензией, получают армированные катализаторы , роль носителя в которых сводится только к роли скелета, препятствующего разрушению собственно контактной массы. [c.198]

    При наличии гранул пористого катализатора реакция протекает на внешней поверхности и внутри самих гранул. Согласно квазигомогенной модели поры малы при сопоставлении с размером гранул и равномерно пронизывают ее. Реакция происходит,во всей грануле катализатора и активность характеризуется эффективной константой скорости, а перенос вещества — эффективным коэффициентом диффузии. Эта модель противоположна модели нереагирующего ядра с определенной зоной реакции, которая кажется целесообразнее и реальнее для большинства некаталитических реакций в системах газ—твердое вещество, описанных в главе ХП. [c.411]

    Исследуя физические пределы гипотетической поры, находим, что всегда можно сделать следующие утверждения. Во-первых, на входе в пору, т. е. на поверхности гранулы катализатора [c.419]

Рис. Х1У-8. Степень использования внутренней поверхности е в зависимости от параметра mL для гранул катализатора различной формы и процессов с изменением объема реагирующей смеси во время реакции Рис. Х1У-8. <a href="/info/1009587">Степень использования внутренней поверхности</a> е в зависимости от параметра mL для <a href="/info/332979">гранул катализатора</a> <a href="/info/72745">различной формы</a> и процессов с изменением объема <a href="/info/939269">реагирующей смеси</a> во время реакции
    Как следует из рис. 49, с увеличением длительности работы катализатора энергия активации процесса крекинга резко возрастает. Низкие значения кажущейся энергии активации (10 000— 24 700 Дж/моль) соответствуют короткой длительности работы катализатора (5—10 мин) и характерны для внешнедиффузионной области. Вероятно, в начале контакта паров с гранулами катализатора молекулы сырья расщепляются с большей скоростью на активной внешней поверхности и в порах, находящихся вблизи ее, [c.112]


    Поскольку с увеличением длительности работы катализатора внешняя поверхность его гранул покрывается слоем коксовых отложений и каталитическая активность этих участков резко снижается, в дальнейшем становится необходимым проникновение не-превраш,енных молекул сырья в более глубокие слои гранул катализатора. Другими словами, в связи с тем, что с увеличением длительности работы катализатора по сечению его гранулы послойно откладывается кокс, участки с повышенной каталитической активностью оказываются расположенными все дальше от поверхности гранулы. Поэтому при продолжительном крекинге для кинетики процесса все большее значение приобретает диффузия по порам катализатора молекул сырья к активным центрам и продуктов крекинга в свободный объем между гранулами катализатора. [c.114]

    Первая стадия имеет целью перевод соединений ванадия, содержащихся в катализаторе, в пятиокись ванадия и концентрирование последней на поверхности гранул катализатора. Для этого катализатор обрабатывают горячим воздухом, в результате чего соединения ванадия окисляются до пятиокиси ванадия, которая обладает летучестью и при высоких температурах в основном сосредотачивается на доступной внешней поверхности гранул. Влияние температуры и длительности окисления воздухом на количество ванадия, отложившегося на внешней поверхности катализатора, показано на рис. 96 [373]. Как это видно, равновесие между содержанием ванадия на поверхности катализатора и в матрице устанавливается через 4 ч. Пятиокись ванадия можно удалить с поверхности катализатора промывкой его разбавленным водным раствором аммония или оставить и удалить в последующих стадиях вместе с другими металлами. [c.239]

    Влияние состава сырья на распределение кокса по грануле катализатора крекинга подробно изучено в работе [42]. Алюмосиликатный катализатор при 500 °С обрабатывали стиролом, бутадиеном, изобутаном, а-метилстиролом и н-гексадеканом. Подсчитано, что если бы кокс заполнил весь свободный объем пор этого катализатора, его количество составило бы 68% массы самого катализатора. Это значение характеризует теоретическую предельную величину заполнения пор Оказалось, что фактическая предельная величина заполнения С , при которой почти полностью прекращалось дальнейшее коксообразование для разных углеводородов, изменяется в очень широких пределах-от 10 до 50%. На практике ни в одном случае не было достигнуто значение С . Во всех экспериментах измеряемая доступная поверхность в процессе закоксовывания сокращалась до минимума (не более 2 м /г), что o- [c.11]

    Интерес к фигурным гранулам катализатора объясняется увеличением поверхности контакта зерна по сравнению с традиционной цилиндрической формой гранулы при одновременном снижении гидравлического сопротивления слоя. [c.262]

    Научно обоснованный подход к конструированию н расчету реакторов с неподвижным зернистым слоем катализатора невозможен без учета структурно-механических характеристик сыпучего материала. Эти характеристики зависят от целого ряда факторов химического состава гранул катализатора, их прочности, размера, формы, шероховатости поверхности, характера внешней нагрузки, свойств окружающей среды и т. д. [c.15]

    Разработан способ восстановления отработанного скелетного никелевого катализатора с применением механической очистки его на вибромельнице абразивным материалом (корундом) [7]. Частота колебаний вибромельницы около 3000 в минуту при амплитуде 2 мм, что способствует интенсивному трению гранул катализатора друг с другом и с корундом. В результате происходит истирание пленки, покрывающей поверхность катализатора. Катализатор очищают на вибромельнице в водной среде, что улучшает очистку одновременно катализатор промывается, и шлам выводится из вибромельницы. Оставление шлама недопустимо, иначе он густой пастой заполняет весь объем между гранулами катализатора и снижает абразивное действие корунда. [c.159]

    Во многих случаях скорости гетерогоргных хилгнческих реакций на пористых катализаторах определяются ие кинетикой химического превращения, а скоростью иеремещения молекул реагирующих веществ из объема к поверхности гранулы катализатора и через поры катализатора к зоне реакции. В зависимости от того, какая стадия является наиболее медленной и, следовательно, определяющей, различают три основных режима. [c.272]

    Из сказанного следует, что наблюдаемый эффект снижения активности катализатора дпя основных реакций в наибольшей степени проявляется в начальной стадии процесса. Именно в этот период при адсорбции сложных стрз турных единиц сырья на внешней поверхности гранул катализатора формируется фронт диффузии составляющих их компонентов внутрь гранулы по поровым каналам и происходят первичные изменения структуры сырья под воздействием активных центров катализатора. Одновременно изменяется структура пор катализатора в результате протекания основных химических реакций, сопровождающихся вьшадением на активной поверхности твердых продуктов реакции. [c.68]

    Количественный анализ массопередачи в портстой структуре катализатора и связь ее с наблюдаемыми (кажущимися) характеристиками реакций является предметом многочисленных исследований. Общий теоретический подход при анализе рассматриваемых систем, основанный на известных принципах диффузионной кинетики, сводится к выводу уравнений, описьшающих одновременное протекание массопереноса и химической реакции на активной поверхности катализатора. При этом учитьгеается, что реагенты и продукты реакции диффундируют в грануле катализатора в противоположных направлениях. [c.79]

    Процесс гидрообессеривания остаточного сырья характеризуется рядом специфических особенностей. Это большие диффузионные затруднения дпя протекания основных реакций, обусловленные наличием значительной жидкой фазы в зоне реакции и большими размерами молекул сырья. Другой важный фактор - быстрая дезактивация катализатора, обусловленная высоким содержанием коксообразующих и металлсодержащих соединений. Все это резко снижает м >фективность реакции удаления серы. В качестве примера могут быть приведены результаты изучения влияния металлсодержащих порфиринов и асфальтенов на степень гидрогенолиза тиофена. В качестве модельного соединения использован протопорфирин IX диметилэф1фа и асфальтены, выделенные из нефти. Добавление соответственно 6 и 4% этих веществ в гаофен снижает степень его превращения с 72% до нуля (рис. 3.8) [100]. В этой работе показано, что для асфальтенов более характерно отложение на внешней поверхности гранулы катализатора вввду больших размеров их частиц и ассоциатов (до 4—5 нь и, соответственно, создание условий для больших диффузионных затруднений в процессе. Порфирииы, хотя и в большей степени проникают в поры катализатора, также отрицательно влияют на реакции удаления серы из тиофена. [c.113]

    Степень удаления кокса с катализатора зависит главным образом от режима работы регенератора и качеств катализатора. Чем доступнее поверхность пор твердого катализатора для молекул кислорода воздуха, тем быстрее выжигается кокс. Чем крупнее поры катализатора, тем полнее выжигается кокс из глубинных частей гранул катализатора. Вместе с тем, при укрупнении пор за счет сокращения числа пор умеренного сечения уменьшается внутренняя рабочая поверхность гранул катализатора. Накопление Б порах кокса вследствие недостаточного удаления его при регенерации приводит к неполному использованию катализатора нри крекинге сырья в peiiiTope. [c.88]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Важной практической проблемой является трансформация глобулярной модели с учетом реального строения пористых тел. Экспериментальные данные исследования морфологии пористых тел, основанные на методе электронной микроскопии, показывают, что вторичные частицы в зависимости от химической природы и способа синтеза катализатора (адсорбента) могут представлять собой глобулы, пластины, иглы и пр. различных размеров. Трансформация глобулярной модели на реальную осуществляется на основе следующих предпосылок а) соотношение плотной фазы и сформированного ею объема пор не зависит от строения первичных и вторичных частиц (суммарный объем пор и вес единичной гранулы катализатора не зависят от типа аппроксимации ее строения) б) суммарная поверхность первичных частиц при данном геометрическом размере зависит только от их числа (находится из экспериментально определенной удельной поверхности и веса единичной гранулы образца) в) число первичных частиц во вторичных зависит от типа их аппроксимации (в силу необходи- [c.146]

    Если скорость процесса определяется переносом вещества между потоком и поверхностью гранулы катализатора, то такой режим называется внешнедиффузионным. Известно, что высокотермические процессы могут иметь два устойчивых стационарных состояния — кинетический (или внутридиффузионный) и внешнедиффузионный режим. Процессы с небольшим тепловым эффектом — изо- и эндотермические — имеют область переходного режима между внешнедиффузионным и кинетическим. [c.160]

    При обтекании гранулы катализатора потоком реагирующих веществ н продуктов реакции траиспорт вещества к поверхности и от нее в общем случае осуществляется путем мак диффузионного, так и конвекционного (массового) переноса. Первый связан с разными парциальными концентрациями веществ в направлении, нормальном к поверхности (или, иначе, с возникновением градиента концентраций а это М направлении), второй — с перепадом общего давления (с градиентом о бщего давления) в том же напр1авлении, с тепловым эффектом реакции и условиями теплоотвода. [c.6]

    Осажденные гелевые катализаторы. Отличительной особенностью осажденных катализаторов является, во-первых, то, что в основу техно.логии их приготовления положен метод соосаждения активных составляющих катализатора, а, во-вторых, то, что в составе катализатора отсутствует носитель, т. е. инертное твердое вещество, образующее самостоятельную фазу, на поверхность которого наносят активные составляющие катализатора. Соосаждение составных компонентов катализатора приводит к образованию либо монолитной гелеббразной структуры, которой присуща механическая прочность, либо кристаллических осадков или дробленых частиц аморфной структуры, требующих дальнейшей обработки для превращения их в прочные гранулы катализатора. [c.176]

    Примечание, г — линейная скорость подвижной фааы а — коэффициент теплоотдачи Т т — температура стенки реактора й — диаметр реактора га — поверхность раздела фаз Т , с — температура и концентрация компонента на поверхности раздела фаз соответственно А — коэффициент массоотдачи Е — порозность слоя 1), эф и эф — аффективный коэффициент продольной и поперечной диффузии соответст 1енно Х эф и дф — эффективный коэффициент продольной и поперечной теплопроводности соответственно 1) , и Одф— эффективный ког<фициент продольной диффузии для подвижной ( азы и в грануле катализатора соответственно Хд и Хэф— [c.140]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    После формования оксида алюминия его гранулы прокаливают для удаления влаги и повышения прочности. Большинство производителей катализатора отмечают, что используемый в качестве 1 0сителя оксид алюминия должен обладать определенными физическими свойствами. Среди наиболее важных характеристик— площадь поверхности и объем пор. Прокаленные носители из оксида алюминия, как правило, имеют удельную поверхность 200—400 м /г. Поверхность пор должна составлять определенную часть от общей поверхности, что обеспечивает их доступность для молекул газообразных реагентов. По-видимому, наибольшее значение имеют поры диаметром 8—60 нм [22]. Носитель катализатора должен быть очень устойчив к истиранию, чтобы полученный катализатор выдержал операции пропитки, сушки, транспортировки, загрузки в трубки реактора и условия реакции. Размер гранул катализатора также весьма важен, так как влияет на насыпную плотность катализатора в трубках реактора, а следовательно, на активность, приходящуюся на единицу объема реактора. Носитель катализатора контролируют по его физическим свойствам и обычно анализируют на содержание ряда примесей, в частности железа, промотирующего образование побочных продуктов, оксида кремния и серы. [c.272]

    В дальнейшем в связи с широким применением в качестве сырья крекинга тяжелых газойлей нефтепереработчики вплотную столкнулись с проблемой отравления катализатора и необходимостью удаления металлов из сырья или с катализатора. При попытках определить допустимую норму металлов в сырье крекинга и на катализаторе оказалось, что эти нормы зависят от типа установки. Так, было найдено, что в псевдоожиженном слое пылевидного катализатора происходит более существенное отравление, чем в движущемся слое шарикового катализатора. Металлы обычно концентрируются на внешней поверхности шарика [101, 102, 207]. При изучении распределения никеля и ванадия, отложившихся из сырья по сечению шариков катализатора, оказалось, что около 44% всего количества никеля и 48% всего содержащегося ванадия располагается в слое внешней поверхности гранул катализатора глубиной 35 мк, что составляет 57о от массы гранулы. При работе установки с циркулирующим слоем шарикового катализатора поверхность шариков истирается, и таким образом основная масса металлов, содержащаяся на катализаторе, выводится из системы вместе с катализаторной пылью. Это подтверждается следующими данными, которые были получены при истирании в лабораторных условиях катализатора, отравленного 0,01057о никеля  [c.149]

    Нарастание содержания углеводов в получающемся при гидрировании ксилите говорит о снижении активности катализатора главным образом за счет постепенного блокирования его поверхности примесями. Осаждаясь на поверхности катализатора, эти примеси, по-видимому, блокируют активные центры и закупоривают капиллярные отверстия, ведущие к таким центрам катализатора, что нарущает нормальную диффузию гидрируемого раствора в более глубокие слои гранул катализатора. Поэтому чем меньше примесей содержит ксилозный раствор, предназначенный для гидрирования, тем больше период работы катализатора между регенерациями. [c.158]


Смотреть страницы где упоминается термин Гранулы катализатора поверхность: [c.34]    [c.92]    [c.109]    [c.123]    [c.167]    [c.53]    [c.156]    [c.164]    [c.233]    [c.238]    [c.238]    [c.240]    [c.209]    [c.422]    [c.114]    [c.376]   
Массопередача в гетерогенном катализе (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гранула

Гранулят

Катализатора поверхность



© 2025 chem21.info Реклама на сайте