Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосомы, аномалии

    Попытки излечить врожденные дефекты цветового зрения предпринимались часто, начиная с 1870 г. Из числа применявшихся способов лечения упомянем о нагревании глаз с помощью горячих компрессов, назначении массивных доз различных витаминов, облучении глаз красным и зеленым светом и о цветовой тренировке, основанной на идентификации предъявляемых окрашенных образцов, а также на назывании цветов. Сообщалось о некоторых случаях исцеления. Мы обсудим подобные сообщения ниже в связи с описанием тестов, служащих для проверки правильности цветовых восприятий. Но пока скажем, что достоверность исцеления не была подтверждена ни в одном случае. По-видимому, убедить глаза развить способность воспринимать цвет, если эта способность не была запрограммирована в хромосомах в момент зачатия, столь же трудно, как с помощью какого-либо подходящего лечения убедить собаку превратиться в кошку. Для коррекции недостатков зрения аномальных трихроматов предлагали носить окрашенные фильтры в виде защитных очков [355] однако другие исследователи показали, что такая коррекция невозможна [373, 710]. Поэтому на вопрос Можно ли излечить врожденные аномалии цветового зрения — следует категоричный отрицательный ответ. [c.101]


    Зрелые яйцеклетки, освобождающиеся из яичника (при овуляции) к концу репродуктивного периода, проводят в остановленной профазе I от 40 до 50 лет. Дефекты, возникающие за зто время в яйцеклетке, могли бы быть причиной высокой частоты генетических аномалий среди детей, рожденных немолодыми женщинами. Например, у женщин старше 40 лет рождается 1% детей с синдромом Дауна-результатом наличия лишней копни 21-й хромосомы из-за нерасхождения соответствующих гомологов при делении ядра созревающего ооцита в мейозе I. [c.35]

    Было установлено, что нормальные признаки человека, как правило, обусловлены полимерными генами, тогда как различные аномалии, затрагивающие разные системы органов, обычно дают моногибридное расщепление. Этот вывод в основном правилен, хотя известны некоторые исключения. Многие резко выраженные отклонения от нормы, встречающиеся у человека, вызваны, как правило, разрушением или каким-то иным неблагоприятным изменением одной точки хромосомы. [c.432]

    Хромосомные изменения, разбираемые в этой главе, представляют собой разрывы и структурные перестройки, возникающие в ядре в результате двух или больше разрывов хромосом с последующим соединением разорванных концов хромосом разными способами. Этот эффект облучения является, по-видимому, прямым в том смысле, что разрыв вызывается ионизирующей частицей, проходящей сквозь хромосому или в непосредственной близости от того места, где происходит разрыв. Но такого рода разрывы и последующая реорганизация хромосом—не единственный тип изменений, возникающих в хромосомах при облучении клеток. Другой тип сводится к изменению свойств поверхности хромосом, вследствие чего они начинают слипаться друг с другом. В результате во время метафазы хромосомы прилипают одна к другой в тех местах, где они случайно соприкоснулись, а сестринские хромосомы не совсем разъединяются в анафазе, и между ними образуются мостики. При сильных изменениях хромосомы иногда образуют в метафазе комок, и дальнейшие стадии деления не наступают или мостики во время анафазы могут не разорваться, и тогда дочерние ядра не образуются. Изменения этого типа, по-видимому, не зависят от локального повреждения хромосомы, и их нельзя объяснить прохождением ионизирующих частиц через них. Такие аномалии связаны с общим изменением свойств всей поверхности хромосомы. Эти изменения удобно называть физиологическим эффектом облучения в противоположность термину структурные изменения, которым мы обозначаем разрывы и перестройки, возникающие в результате соединения разорванных концов. Последний тип изменений можно объяснить локальным действием облуч<жия на хромосомную нить . [c.150]

    В 1959 г. было установлено, что причина синдрома Тернера заключена в отсутствии X-хромосомы. Больные имеют 45 хромосом вместо 46 и набор половых хромосом ХО вместо XX. Такой генотип является примером моносомии. На рис. 25.29 показано, что синдром Тернера может возникнуть в результате нерасхождения хромосом во время мейоза, и представляет собой аномалию, парную синдрому Клайнфельтера. Теоретически должно рождаться одинаковое число индивидуумов с синдромами Клайнфельтера и Тернера. В действительности же синдром Тернера встречается гораздо реже, примерно 1 на 2500 родившихся, по сравнению с 1 на 500 родившихся в случае синдрома Клайнфельтера. Это происходит из-за того, что вероятность раннего выкидыша плода с синдромом Тернера существенно выше. Подсчитано, что до рождения доживает лишь 2—3% зародышей с синдромом Тернера. Следует отметить, что синдром Тернера, по-видимому, служит основной причиной ранних выкидышей 20% таких эмбрионов имеют генотип ХО. [c.255]


    Ооциты второго порядка, освобождающиеся из яичника (нри овуляции) к концу репродуктивного периода, образуются из ооцитов первого порядка, которые провели в остановленной профазе 1 от 40 до 50 лет. Дефекты, возникающие за это время в яйцеклетке, могут быть причиной высокой частоты генетических аномалий среди детей, рожденных немолодыми женщинами. Например 1% детей у женщин старше 40 лет страдает синдромом Дауна, обусловленным трисомией по 21-й хромосоме (следствие нерасхождения соответствующих гомологов при делении ядра созревающего ооцита в мейозе 1) (рис. 15-33). [c.36]

Рис. 21-4. Транслокация между 9-й и 22-й хромосомами ответственна за развитие хронического миелолейкоза у человека. Меньшая из двух дефектных хромосом называется филадельфийской (РЬ ) (впервые эта аномалия была описана в Филадельфии). Рис. 21-4. Транслокация между 9-й и 22-й хромосомами ответственна за <a href="/info/1515479">развитие хронического</a> <a href="/info/1355204">миелолейкоза</a> у человека. Меньшая из <a href="/info/1696521">двух</a> дефектных хромосом называется филадельфийской (РЬ ) (впервые эта аномалия <a href="/info/1330306">была</a> описана в Филадельфии).
    Гипоплазия эмали (тонкая зернистая эмаль, зубы светло-бурого цвета) наследуется как сцепленный с А -хромосомой доминантный признак. В семье, где оба родителя страдали отмеченной аномалией, родился сын с нормальными зубами. Определите вероятность того, что следующий из их детей также будет с нормальными зубами. [c.90]

    Гипертрихоз наследуется как сцепленный с Y-хромосомой признак, который проявляется лишь к 17 годам жизни. Одна из форм ихтиоза (чешуйчатость и пятнистое утолщение кожи) наследуется как рецессивный, сцепленный с А -хромосомой признак. В семье, где женщина нормальна по обоим признакам, а муж является обладателем только гипертрихоза, родился мальчик с признаками ихтиоза. Определите вероятность проявления у этого мальчика гипертрихоза. Определите вероятность рождения в этой семье детей без обеих аномалий и какого они будут пола. [c.98]

    Отосклероз (поражение стремечка, приводящее к глухоте) наследуется как доминантный аутосомный признак с пенетрантностью 30%. Гипертрихоз (вырастание волос на краю ушной раковины) наследуется как признак, сцепленный с У-хромосомой с полным проявлением к 17 годам. Определите вероятность проявления одновременно обеих аномалий у детей в семье, где жена нормальна и гомозиготна, а муж имеет обе аномалии, но мать его была нормальной гомозиготной женщиной. [c.99]

    Отосклероз (очаговое заболевание косточек среднего уха, способное вызвать глухоту) наследуется как доминантный аутосомный признак с пенетрантностью 30%. Отсутствие боковых верхних резцов наследуется как сцепленный с Х-хромосомой рецессивный признак с пенетрантностью 100%. Определите вероятность рождения детей с обеими аномалиями одновременно в семье, где мать гетерозиготна в отнощении обоих признаков, а отец нормален по обеим парам генов. [c.99]

    Цитогенетика человека стала бурно развиваться с 1956 г., когда было установлено, что в клетках человека содержится 46 хромосом. То, что это случилось так поздно, нельзя объяснить внедрением каких-то новых цитологических методов. В действительности это открытие могло быть сделано намного раньше. По-видимому, задержка объяснялась отсутствием интереса к генетике человека со стороны большинства ученых-ме ДИКОВ, занимающихся лабораторными исследованиями. В медицинских учебных заведениях генетика человека не существовала как самостоятельная научная дисциплина. Наследственные болезни считали исключениями, которые нельзя изучать медицинскими методами, такими, как методы анатомии, биохимии, физиологии, микробиологии, патологии и фармакологии. Большинство генетиков работало на биологических кафедрах университетов, колледжей или на сельскохозяйственных станциях. Проблемы цитогенетики человека их практически не интересовали. Обнаружение трисомии по 21-й хромосоме при синдроме Дауна и аномалии половых хромосом при нарушениях полового развития определило важность цитогенетики в медицине. Подробности развития цитогенетики человека будут описаны в гл. 2. [c.27]

    Хромосомы в сперматозоидах человека. Несколько лет назад был предложен метод приготовления препаратов хромосом непосредственно из сперматозоидов человека. Для этого сперму сначала инкубировали с ооцитами золотистого хомячка, лишенными блестящей оболочки, чтобы индуцировать митозы [489]. Этот метод весьма важен для прямого определения хромосомных аномалий в сперматозоидах человека. Однако его воспроизводимость очень плохая [431]. В одном исследовании частота хромосомных аномалий в сперматозоидах оказалась равной 8,5% [432]. [c.45]

    Как отмечалось выше, пробанды в этом исследовании направлялись на консультацию с диагностическими целями, поэтому вряд ли неожиданным является тот факт, что у них выявлены разнообразные аномалии. Однако эти аномалии трудно было охарактеризовать как единый синдром. Более того, среди родственников с инверсиями были и вполне нормальные в клиническом отношении. Следовательно, весьма вероятно, что инверсии в хромосомах 9 и 10 не влияют ни на фенотип носителей, ни на их плодовитость. [c.83]

    Фрагменты. Хромосомные фрагменты, не содержащие центромеры или ее части (так называемые ацентрические фрагменты), в митозе и мейозе обычно теряются, но при наличии центромеры они могут сегрегировать как дополнительные, маркерные, хромосомы. При исследовании случайной выборки новорожденных в Дании (разд. 5.1.2.1) такие маркеры оказались не редкими в некоторых случаях у носителей этих маркерных хромосом обнаруживаются фенотипические аномалии. [c.85]

    Человек. Д. может быть причиной бесплодия мужчин. У лиц, имевших контакт с Д. в концентрации свыше 965 мг/м в течение 1—3 лет, уменьшалось количество сперматозоидов в эйя-куляте, при контакте свыше 3 лет уменьшались размеры семенников, развивалась атрофия эпителия семенных канальцев, азооспермия, в крови возрастало содержание гонадотропных гормонов гипофиза. Восстановление функции после прекращения контакта с Д. наступало только в том случае, если суммарная длительность контакта не превышала 200 ч и не было изменений уровня фолликулостимулирующего гормона в крови. У жен рабочих, контактировавших с Д., втрое увеличена частота самопроизвольных абортов, повышен процент врожденных аномалий новорожденных и их смертность. Среди новорожденных доминируют девочки (в эксперименте показано нарушение деления Y-хромосомы). Повышена смертность от злокачественных новообразований (преимущественно рак легких) у людей, контактировавших с Д. ( Бюлл. МРПТХВ Неагп et al. Potashnik). [c.656]


    У человека изменение в наборе половых хромосом также приводит к отклонениям от нормальной половой дифференци-ровки. Совсем недавно обнаружены различные случаи таких аномалий у индивидуумов, имевших конституции ХХУ и ХО (см. стр. 443). Индивидуумы с набором половых хромосом ХХУ проявляли определенную степень интерсексуальности. Это указывает на то, что у человека в отличие от дрозофилы У-хромосома играет активную роль в определении мужского пола. [c.129]

    Еще больше вредных генов было обнаружено у бразильских популяций Drosophila Willistoni. Из всех хромосом II, исследованных у этого вида, 42% оказались летальными или почти летальными в гомозиготном состоянии 57% хромосом были сублетальны, 31% в гомозиготном состоянии вызывали стерильность по крайней мере одного из полов, 32% задерживали индивидуальное развитие, а 16% вызывали видимые аномалии. Сходные результаты были получены у этого вида и для хромосомы III. [c.286]

    Возможно, что значительная часть непроизвольных выкидышей, случающихся у человека, также вызывается генетическими факторами, которые в гомозиготном состоянии вызывают уродство. Во всяком случае, у человека известно множество летальных и сублетальных факторов, обладающих тем или иным специфическим действием. О двух таких случаях уже говорилось ранее (см. фиг. XVII). Можно было бы привести значительно больше подобных примеров. Если даже ограничиться одними глазами, то можно перечислить сотни различных наследственных аномалий и дефектов органов зрения так же обстоит дело и с другими органа.ми. Следовательно, очевидно, что человек в этом смысле сходен с другими организмами, для которых характерно перекрестное оплодотворение с преобладанием диплофазы, т. е. в наших хромосомах содержится множество неблагоприятных генов, которые, однако, очень редко проявляются в потомстве от браков между людьми, не родственными друг другу. Разумеется, в хромосомах этих людей также заключены известные недостатки, но в большинстве случаев они представляют собой иные отклонения от нормы. Поэтому в большинстве случаев объединяющиеся при оплодотворении хромосомы образуют такие комбинации, что они удачно дополняют друг друга и, как правило, рождающееся потомство совершенно нормально и жизнеспособно. [c.292]

    Отсутствие половых хромосом у диких и культурных растений устраняет самый важный барьер на пути полиплоидии, распространенной среди них в сотни раз чаще, чем среди культурных животных, особенно млекопитающих. Наличие строгого контроля половых хромосом, свойственного животным, резко уменьшает возможности полиплоидии. В подавляющем большинстве случаев ее возникновение в гомогаметпческом поле ведет к очень редко преодолимым аномалиям баланса половых хромосом у гетерохромосомного пола, поэтому полиплоидия в эволюции высших животных представляет большую редкость. У растений, не имеющих, за известными исключениями, половых хромосом, полиплоидия возникает чаще и является важной формой эволюции растений. Надо все же заметить, что даже у растений с хромосомной детерминацией пола последняя является гораздо менее строгой, и у большинства родов растений, несущих ноло-вые хромосомы, имеются полиплоидные виды. Скорее всего это возникает потому, что наличие половой детерминации пола у растений не уподобляет их животным по нормировке непрерывности зародышевой плазмы. [c.24]

    Четыре пшеничные формы - 266/2, 208/1, 199/3, 23 - имеют озерненность более высокую, чем Лютесценс 329. Для первой установлено, чт( она содержит достоверно более высокое число одиночных хромосом в Mj (см. табл. 3), а мутант 199/3 - большее число открытых и преждевременно разошедшихся бивалентов. Как указывалось выше, эти цитологические аномалии могут быть связаны с наличием микроделений или вставок из хромосом пырея. Последнее обстоятельство особенно важно, и если бы оно подтвердилось, то свидетельствовало бы о возможности вставок небольших участков хромосом пырея в хромосомь пшеницы и возникновении при этом более плодовитых форм. [c.246]

    На благоприятном цитологическом материале, когда каждая клетка содержит небольшое количество крупных и в некоторых случаях индивидуализируемых хромосом, можно различать эти два типа хромосомных аномалий . Так, если две хромосомы соединены во время метафазы, то удается установить, является ли причиной этого соединения хроматидный обмен (рис. 33, еЗ), представляющий собой структурное изменение, или слипание поверхностных слоев хромосом в результате физиологического эффекта. Если хромосома, имеющая обычно У-образную форму, принимает форму кольца, то можно установить, связано ли это со структурным изменением, в результате которого обра- [c.150]

    Цветовая слепота. Полное отсутствие или недостаток колбочек какого-либо типа ведет к различным формам цветовой слепоты или аномалиям цветоошущения, т. е. неспособности различать определенные цвета. Например, люди, у которьгх отсутствуют красные или зеленые колбочки, не различают красный и зеленый цвета, а те, у кого имеется недостаточное число либо тех, либо других колбочек, плохо различают ненасыщенные оттенки этих цветов. Для выявления дефектов цветового зрения применяют специальные тестовые таблицы (например, таблицы Исихары), составленные из разноцветных точек. На некоторьгх таблицах из этих точек составлены цифры. Человек с нормальным цветовым зрением легко различает эти цифры, а лица с нарушенным цветоощущением видят другое число или вообще не видят никакой цифры. Цветовая слепота передается по наследству как рецессивный признак, сцепленный с полом. Он обусловлен генными дефектами Х-хромосомы, поэтому им чаще всего страдают мужчины око- [c.328]

    Зигота, в которой число хромосом меньще диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Если это происходит у животньк, то из таких зигот в больщинстве случаев развиваются особи с резко выраженными аномалиями. Среди наиболее часто встречающихся хромосомных мутаций, возникающих у человека в результате нерасхождения хромосом, — одна из форм трисомии, называемая синдромом Дауна (2п = 47). Такое состояние, названное по фамилии врача, описавшего его впервые в 1866 г., вызывается нерасхождением хромосом 21-й пары. Эта мутация описана в разд. 25.7.6. [c.210]

    Синдром Дауна назван по имени врача Джона Лэнгдона Дауна, который в XIX в. работал в приюте в Суррее (Великобритания) и впервые описал заболевание в 1866 г. Оно поражает примерно 1 из 750 новорожденных, однако около половины эмбрионов с такой аномалией погибает в результате спонтанного аборта (выкидыща). В 1959 г. французский врач Лежен с помощью микроскопии впервые показал, что болезнь связана с присутствием дополнительной 21-й хромосомы (рис. 25.26). Его открытие стало [c.252]

    Распределение профага к среди рекомбинантных бактерий носит, однако, совершенно аномальный характер, если лизогенным оказывается родитель Hfr, а нелизогенным — родитель F". В таком случае профаг почти никогда не наследуется рекомбинантами. Кроме того, частота появления рекомбинантов оказывается очень низкой, а те рекомбинанты, которые все же возникают при этом, по своим генетическим свойствам резко отличаются от рекомбинантов, возникающ,их при скрещиваниях Hfr X F"(X) или Hfr(X) X F (X). Жакоб и Вольман показали, что эта аномалия является следствием явления, названного ими зиготной индукцией. Всякий раз, когда в нелизогенную клетку F проникает фрагмент хромосомы лизогенной бактерии-донора Hfr, несущей профаг Я, этот профаг индуцируется, переходит в вегетативное состояние и, размножаясь, дает от 1 до 200 частиц инфекционного фага X, которые в конечном итоге лизируют зиготу и высвобождаются. При таких скрещиваниях большая часть зигот, получивших от Hfr-бактерии фрагмент хромосомы с профагом, погибает. Следовательно, у рекомбинантов могут проявиться только те генетические маркеры донора, которые передаются раньше профага, т. е. располагаются ближе к началу хромосомы. Однако если при таком скрещивании лизогенной оказывается бактерия-реципиент F", то зиготной индукции не происходит, независимо от того, является ли донор Hfr лизогенным или нет. В потомстве, полученном от таких скрещиваний, не наблюдается аномалии в расщеплении родительских признаков. Таким образом, присутствие профага X обусловливает иммунитет реципиента F не только в отношении суперинфекции гомологичным свободным фагом X, но и в отношении вегетативного развития гомологичного внутри-хромосомного профага X, полученного клеткой-реципиентом от бактерии-донора Hfr. [c.343]

    Синдром Дауна-врожденное заболевание человека, описанное в конце прошлого века. Для него характерны умственная отсталость, нарушения дерматоглифики ладони и определенные аномалии в строении лица (монголоизм), которые делают больных похожими друг на друга. Продолжительность жизни страдающих синдромом Дауна составляет в среднем 16 лет некоторые из них достигают половозрелости, но оставляют потомство очень редко. В клетках большинства больных содержится 47 хромосом (одна лишняя хромосома 21 пары), очень редко хромосомный набор больного состоит из 46 хромосом. Но и в этом случае хромосома 21 представлена в трех копиях, причем одна из копий транслоцирована на другую хромосому (часто это бывает длинное плечо хромосомы 14 см. рис. 21.28). Объединившиеся хромосомы 21 и 14 достаются ребенку от одного из родителей. В клетках этого родителя содержится по 45 хромосом фенотипически такой человек [c.62]

    Если дефектная клетка дает начало опухоли, она должна передать свою аномальность потомству, т. е. повреждение должно быть наследуемым. Поэтому первая проблема, с которой мы сталкиваемся при попытке понять сущность рака такова является ли этот наследуемый дефект результатом генетического изменения, т. е. изменения в последовательности нуклеотидов ДНК, или изменения эпигенетического, когда меняется картина экспрессии генов, но не первичная структура ДНК. Наследуемые эпигенетические сдвиги, отражающие память клеток (см. разд. 10.3 и 16.2.8), - это черта нормального развития, проявляющаяся в стабильности дифференцированного состояния (разд. 17.1.1) и в таких явлениях как инактивация Х-хромосомы (разд. 10.3.9), и нет никаких оснований сразу отвергать участие подобных процессов в возникновении рака. Для одного редкого и необычного вида рака - тератокарциномы (разд. 16.2.6)-действительно, существуют свидетельства в пользу эпигенетического нроисхождения. Тем не менее имеются серьезные основания думать, что большинство раковых опухолей вызваны именно генетическими изменениями (хотя энигенетические также могут вносить свой вклад в дальнейшее развитие болезни). Говоря конкретно, это означает, что в последовательности нуклеотидов ДНК клеток данной опухоли имеется скрытая аномалия, которую нередко удается выявить. Мы уже говорили о хроническом миелогенном лейкозе, подобные примеры нам будут встречаться и в дальнейшем. Однако из сказанного вовсе не следует, что генетическое изменение - это первый шаг. ведуший к раку. Более правильное утверждение состоит в том. что большинство канцерогенных агентов вызывает генетические изменения, и, наоборот, аген- [c.449]

    Микротрубочки растут в одном направлении от специфических центров (центриолей) внутри клетки. На каждой хроматиде хромосомы (см. гл. 37) имеется кинетохор, откуда начинается рост микротрубочек. Многие нарущения в делении хромосом являются результатом аномалий в структуре или функции кинетохоров. Движение хромосом в анафазе митоза зависит от микротрубочек, но молекуляр- [c.345]

    В. Хромосомные транслокации. Как отмечалось ранее, во многих опухолевых клетках можно наблюдать хромосомные аномалии. Один из видов таких аномалий—транслокация. Суть ее состоит в том, что фрагмент одной хромосомы отщепляется и присоединяется к другой хромосоме. Если эта последняя хромосома в свою очередь отдает соответствующий фрагмент первой хромосоме, то происходит так называемая реципрокная транслокацня . В целом ряде опухолевых клеток найдены характерные транслокации. Например, при хроническом гранулоцитарном лейкозе в клетках можно обнаружить Филадельфий- [c.360]

    Совершенствование цитогенетических методов сделало возможным их применение для изучения многих типов врожденных аномалий и интерсексов. Было показано, что возникновение специфической формы рака, хронического миелолейкоза, вызывается наличием уникальной хромосомной аберрации. Метод дифференциальной окраски хромосом, разработанный Касперсо-ном в 1969 году, сделал возможным идентификацию каждой хромосомы человека, в результате чего цитогенетические методы [c.32]

    Еще в 1931 г. Гольдшмидт предложил метод определения генотипического пола у интерсексов. Поскольку прямых методов изучения половых хромосом не существовало, перспективным казалось исследование дальтонизма, обычно наследуемого как Х-сцепленный признак. В двух выборках, охватывающих 89 случаев синдрома Клайнфельтера, у трех больных были обнаружены соответствующие аномалии цветового зрения (разд. 3.5.3) [462 478]. Такая частота (3,4%) не вполне соответствовала ожидаемой для мужчин (7-9%), но, с другой стороны, она была намного выше, чем ожидалось для женщин (менее 1%). Если бы эти три пациента имели нормальный женский кариотип 46, XX, они должны были бы получить по одной из Х-хромосом от каждого из родителей. Поскольку дальтонизм проявляется только у гомозиготных женщин, ожидалось, что отцы этих больных также имеют аномалию цветового зрения. В действительности же двое обследованных отцов дальтонизмом не страдали. Эти факты прояснились, когда Джекобе и Стронг (1959) [395], исследуя хромосомы в клетках костного мозга больных с синдромом Клайнфельтера, обнаружили 47 хромосом, причем родители больных имели нормальный кариотип. Дополнительная хромосома принадлежала к группе, включающей Х-хромосому. Кариотип был идентифицирован предположительно как ХХУ. У двух больных с синдромом Клайнфельтера и аномалией цветового зрения (отцы которых нормально различали цвета) обе Х-хромосомы были явно материнского происхождения, попавшими в одну половую клетку вследствие мейоти-ческого нерасхождения (разд. 5.1.2.3). [c.38]

    Окрашивание. Наиболее простой способ окрашивания-красителем Гимза или 2%-ным ацетоор-сеином, или 2%-ным ацеткармином. Эти красители окрашивают хромосомы целиком, равномерно и интенсивно. Для некоторых диагностических целей (например, для выявления численных аномалий хромосом) этот метод вполне достаточен. Для получения более детальной картины структуры хромосом и идентификации отдельных хромосом или их сегментов используются различные способы дифференциального окрашивания. [c.43]

    Благодаря систематическому обследованию новорожденных с множественными пороками развития Патау с сотр. удалось выявить три случая трисомии двух больных с трисомией по 18-й хромосоме и одного-с трисомией по одной из О-хро-мосом. Одновременно Эдвардс и сотр. [343] также обнаружили новорожденного с трисомией 18 (первоначально ошибочно идентифицированную как трисомия 17). Трисомия О позже была идентифицирована как трисомия 13. Основные признаки и симптомы заболеваний, связанных с этими хромосомными аномалиями, представлены на рис. 2.32 и 2,33. В последующие годы все попытки открыть новые синдромы аутосомных трисомий среди новорожденных оказались безуспешными, на основании чего был сделан вывод о том, что они легальны. Этот вывод был подтвержден исследованиями хромосом при спонтанных абортах в клетках таких эмбрионов обна- [c.66]

    Мозаики. Мозаиками называют особей, в организме которых сосуществуют две или более генетически различных клеточных популяции. Мозаицизм обнаруживается доволько часто при численных аномалиях как половых хромосом, так и аутосом. Хромосомных мозаиков иногда называют миксоплоидами. Мозаик может возникнуть вследствие митотического нерасхождения или в результате утери хромосомы вследствие анафазного отставания (рис. 2.35). Оценки частоты таких нарушений митоза получены в случае синдрома Дауна. Риск [c.68]

    Очень маленькие инверсии могут встречаться в отдельных популяциях довольно часто, так как скорее всего они совершенно не влияют на состояние здоровья или плодовитость. Если инверсия затрагивает протяженный участок хромосомы, т6 возможность нарушений в мейозе более вероятна. Однако сами носители инверсий эуплоидны, поэтому вряд ли следует ожидать у них какие-либо фенотипические аномалии. [c.83]

    Так, например, кольцевая хромосома 13 была обнаружена у 14-месячного ребенка с умственной отсталостью и такими признаками, как микроцефалия, эпикант, широкая спинка носа, выступающие ушные раковины, микрогнатия [382]. В 85% лимфоцитов крови и в 82% фибробластов кожи выявлялось простое кольцо, идентифицированное как 13г (р11 q34). В 7% лимфоцитов и в 6% фибробластов можно было наблюдать двойное дицентрическое кольцо, которое состояло из двух хромосом 13. В 5% лимфоцитов и в 8% фибробластов кольцо отсутствовало, одна метафаза была с двумя сцепленными двойными кольцами, остальные клетки содержали другие аномалии. На рис. 2.40 показана судьба кольцевой хромосомы в митозе. В большинстве случаев кольцо реплицируется и проходит через митоз нормально. Иногда происходит один сестринский обмен и формируется двойное кольцо с двумя центромерами. Двойной сестринский обмен может привести к образованию двух сцепленных колец. В следующей интерфазе двойное кольцо может снова претерпеть один, два или более сестринских обмена, что в свою очередь приведет к двойным сцепленным кольцам или к четверным кольцам. Таким образом, возможно [c.85]

Рис. 2.60, Реципрокная транслокадия. Сбалансированная зигота имеет 46 хромосом в двух хромосомах видны комплементарные структурные аномалии. Рис. 2.60, Реципрокная транслокадия. Сбалансированная зигота имеет 46 хромосом в <a href="/info/1696521">двух</a> хромосомах видны комплементарные структурные аномалии.

Смотреть страницы где упоминается термин Хромосомы, аномалии: [c.148]    [c.242]    [c.244]    [c.196]    [c.256]    [c.301]    [c.476]    [c.38]    [c.39]    [c.40]    [c.81]    [c.88]   
Химия окружающей среды (1982) -- [ c.42 , c.426 , c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Аномалии числа хромосом геномные мутации

Отсутствие Х-хромосомы у девушек как причина характерологических аномалий

Синдромы, связанные с аномалиями числа хромосом

Структурные аномалии хромосом

Удваивающаяся числовые аномалии половых хромосом

Хромосома хромосомы

Хромосомы

Численные аномалии половых хромосом



© 2025 chem21.info Реклама на сайте