Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование асфальтов

    Все многообразие экспериментальных исследований асфальтено-содержащих нефтяных систем возможно рассмотреть по двум основным направлениям. Сущность исследований первого направления состоит в изучении физико-химических характеристик сырьевых композиций, в частности в присутствии вводимых в них агентов, смолисто-асфальтеновых концентратов, содержащихся в этих композициях. При этом проводится хроматографический анализ исходных сырьевых образцов и выделившихся смолисто-асфальтеновых концентратов, определяются их молекулярные массы, изучается взаиморастворимость компонентов сырья и вводимых агентов для дальнейшей апробации различных теоретических моделей, выявляются пороговые концентрации сырьевых композиций при различных температурах, давлениях и концентрациях различных агентов. [c.124]


    При исследовании смесей сложных органических веществ,. какими являются нефтепродукты, применение химических методов анализа недостаточно. По мере возрастания молекулярного веса нефтепродуктов усложняется их анализ. Наибольшие трудности представляет исследование асфальто-смолистых веществ,, химический состав и строение которых мало изучены. [c.223]

    Крейцер Г. Д. Химические испытания и исследования [асфальтов, битумов и пеков]. В кн. Г. Д. Крейцер. Асфальты, битумы [c.285]

    Руководитель лаборатории по исследованию асфальта, Тексас, США.. 7  [c.99]

    Предметом настоящего исследования являются асфальты, полученные путем окисления экстрактов крезольной и фурфурольной очистки смазочных масел из парафиновых и нафтеновых нефтей. Для полной оценки качества таких экстракционных асфальтов были определены их физические, химические и реологические свойства, а также проведены элементарный и групповой анализы. Было показано, что исследованные асфальты содержат преимущественно ароматические кольца. Этот ароматический характер асфальтов имеет прямое отношение к таким их свойствам, как удельный вес, поверхностное натяжение и др. Групповые анализы указывают на содержание в асфальтах небольшого количества смол и асфальтенов и на большое содержание масел. [c.119]

    Поскольку асфальтены являются нелетучими соединениями и в них концентрируются порфири-ны из нефти, качество широкой масляной фракции ухудшается в основном за счет жидкости, уносимой после однократного испарения сырья в питательной секции колонны. Поэтому при топливном варианте перегонки мазута более важно уменьшить унос тяжелой флегмы в концентрационной части колонны, нежели обеспечить четкое разделение мазута на масляные фракции и гудрон. Вследствие этого вакуумные колонны по топливному варианту имеют небольшое число тарелок или невысокий слой насадки и развитую питательную секцию (рис. П1-22). В верху колонны обычно два циркуляционных орошения для лучших условий регенерации тепла. В секции питания устанавливается отбойник из сетки и промывные тарелки. Часть остатка мо жет охлаждаться и закачиваться вновь в колонну для снижения температуры низа [47]. Качество вакуумного газойля контролируется по его коксуемости, цвету и фракционному составу. Для автоматического регулирования процесса целесообразно определить экспериментально зависимость содержания металлов в вакуумном газойле и его цвет от коксуемости. Исследование радиоактивными изотопами содержания асфальтенов и металлов (N 0 и УгОз) в вакуумном газойле показало, что между ними сущест- 12 вует линейная зависимость (рис. П1-23) [48]. [c.176]


    Ранее считалось, что из-за повышенного содержания тяжелых металлов, связанного азота и асфальто-смолистых веществ в мазутах высокосернистых нефтей и неудовлетворительной разделяющей способности вакуумных секций действующих АВТ из нефтей этого типа удается получить не более 6% качественного вакуумного отгона, который можно было бы использовать как сырье каталитического крекинга. Для современного завода такая степень отбора вакуумного газойля совершенно недостаточна. Однако результаты исследований в БАШНИИ НП показали еще в 1963 г. возможность получения из высокосернистой арланской нефти на установках АВТ до 12% вакуумного газойля хорошего качества. В настоящее время на промышленной установке АВТ выход фракции 340—550 °С из высокосернистой арланской нефти достигает 32— 35% на нефть, выход фракции 350—450 °С составляет 15%, а фракций 350—500 и 350—550 °С — соответственно 23 и 27%. [c.124]

    Проведенные исследования показали, во-первых, что нефти площадей Шор-Су и Северный Риштан, подвергшиеся сильным гипергенным изменениям, различаются по структуре УВ. Продукты их гипергенных превращений (мальты, асфальты, озокериты) сохранили генетические черты этих нефтей — характерные особенности парафиновых и нафтеновых структур, они не стали однотипными несмотря на сильное окисление. [c.158]

    Предметом исследования может быть и то, что такие асфальты дают большое значение величины, которую называют дисперсионным твердением (увеличение твердости при старении) [54—55]. Асфальт Тринидада, как наблюдали, затвердевает в течение одного года, но затвердение может быть ликвидировано простым нагреванием. [c.546]

    Конечно, наши привычки могут со временем меняться и это делает прогноз неточным. В настоящее время проводятся широкие исследования в области новых способов использования отходов. По данным японских ученых, если отходы занимают немного места, то их можно покрыть асфальтом и использовать в качестве строительного материала. С помощью процесса, разработанного учеными Бюро горного дела США, 1000 кг органических отходов (содержащих большие количества углерода и водорода) могут быть переработаны в 250 кг углеводородной смеси. Битое стекло и резиновые отходы используются при постройке автомобильных дорог. [c.113]

    Из этих исследований вытекай весьма интересный вывод, — это возможность получать асфальты, исходя из смол, простым испарением на воздухе, даже на холоду, — смолы при этом окисляются и дают твердые асфальты. I [c.115]

    Различные исследования были произведены для определения соотношения в данных образцах нефти между количествами мягкого и твердого асфальта. [c.116]

    В 80 гг. на Куйбышевский НПЗ начала поступать угленосная нефть Прикамья. К 1985 г. ее доля возросла до 95 %. Угленосные нефти характеризуются высокой плотностью и вязкостью, высоким содержанием сернистых и асфальто-смолистых веществ, а также повышенным содержанием меркаптанов и сероводорода. В связи с этим на НПЗ возникла проблема исследования, интенсификации и внедрения более экономичных, малоотходных процессов и схем очистки нефтяных фракций от сернистых соединений с максимальным использованием существующего оборудования и катализаторов, выпускаемых отечественной промышленностью. В связи с повышением спроса на топливо ТС-] разработан и внедрен на НПЗ процесс очистки этого топлива от меркаптанов. [c.4]

    Течению расплава, сжимаемого между двумя параллельными дисками, как отмечалось ранее, присущи все характерные особенности течения при литье под давлением. Эту геометрическую конфигурацию и этот тип течения используют также в некоторых системах гидродинамической смазки и в различных приборах для реологических исследований асфальта и других вязких жидкостей. Пластометр Вильямса, работа которого основана на этом принципе, использовался в резиновой промышленности многие годы [27]. Недавно Лейдер и Берд [28] указали на преимущества этого простого геометрического решения для скоростных реологических испытаний полимерных расплавов. [c.349]

    Н. И. Велизарьева, Л. Г. Жердева. Физико-химическое исследование асфальто-смолистых веществ восточных нефтей. Доклад на Всесоюзном совещании 16—20/1, 1956. [c.413]

    Наиболее естественным в ьсинетических исследованиях процессов нефтепереработки является использование так называемых технологических или химических группировок как по исходному сырью, так и по конечным продуктам. Наиболее часто используемый в этих целях прием — это считать за индивидуальное реагирующее вещество отдельные нефтяные фракции, например, бензин, газ, кокс и т.д., или отдельные химические компоненты, например, парафиновые, нафтеновые, ароматические углеводороды бензинов и продуктов каталити — ческого риформинга. Так, в процессах термолиза тяжелых нефтяных остатков Б качестве индивидуальных веществ сырья и продуктов часто принимают масла, смолы, асфальтены, карбены и карбоиды. [c.19]


    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    Аналогичные результаты бьши получены в результате экспериментального моделирования процессов нефтеобразования при геохимических исследованиях [15]. В качестве исходных веществ для этих целей были приняты природный кероген и асфальтены. Кероген, как известно, в соответствии с осадочно-миграционной теорией органического происхождения нефти, представляет собой конечный продукт превращений органического вещества в осадочных породах. Это труднорастворимое органическое вещество, находящееся в комплексе с неорганической составляющей, представленной обычно глинистыми минералами и образующее геополимер . По установившимся представлениям из керогена в результате длительных многостадийньи процессов в осадочных поро- [c.19]

    Исследования связи между характером вязкостно-температурной зависимости как индивидуальных углеводородов, так и фракций нефтяных масел и их химической природой и структурой, проводившиеся в течение ряда лет многими исследователями, позволяют обобщить основные положения этой связи [15 —18]. Наихудшей вязкостно-температурной зависимостью обладают находящиеся в нефтях и в некоторых нефтяных продуктах высокомолекулярные асфальто-смолистые вещества, а также полицикли-ческие углеводороды, особенно полициклические ароматические углеводороды с короткими боковыми цепями. Наилучшей вяз-костно-температурной зависимостью обладают углеводороды, имеющие длинную алифатическую цепь, в частности алкиларома-тические и алкилпафтеновые углеводороды. Увеличение числа, боковых цепей, а также их разветвление ухудшают вязкостнотемпературную характеристику углеводородов. [c.14]

    Кроме того, особую специфику имеют и сами породы. Известно, что наиболее активны в этом плане (лучше сорбируют смолисто-асфальтено-вые компоненты) глинистые разности. Нами совместно с А.Г. Милешиной были проведены опыты по фильтрации нефтей через породы разного литологического состава (опыты выполнялись А.Г. Милешиной, спектральные исследования — автором) алевролиты, песчаники, известняки, доломиты и гипсоангидритовую породу при температуре 20 и 40 Си перепадах давления 24,5 кПа. Перед началом эксперимента определялся состав исходной (используемой в опытах) нефти, отобранной на месторождении Кенкияк (скв. 90, артинский ярус). В процессе каждого опыта [c.117]

    При превращении нефтей в зоне гипергенеза, в результате чего образовались в исследуемом районе мальты, асфальты, асфальтиты и озоке-риты, изменились как соотношение углеводородной и смолисто-асфальте-новой частей, так и углеводородный состав. Как показали проведенные исследования, в битумах площадей Шор-Су и Северный Риштан по сравнению с нефтью уменьшилось содержание парафино-нафтеновых и ароматических УВ, резко возросло количество асфальтенов. Содержание как бензольных, так и спиртобензольных смол практически не изменилось, но их спектральная характеристика для бензольных смол) [c.157]

    При переходе к тяжелому нефтяному сырью увеличивается доля коксовых отложений, образованных за Счет реакций конденсации термически нестабильных компонентов и исходных коксогенных соединений ( асфальтенов и смол). В литературе в основном приводятся результаты исследований, касающиеся образования и окисления углеродистых отложений на железоокисных катализаторах при переработке легкого углеводородного сырья, не содержащего гетеросоединений и асфальто-смолистых веществ. Тем не менее, общие закономерности образования и выгорания коксовых отложений, полученные для низкомолекулярного углеводородного сырья, могут быть использованы при исследовании же-лезоокисных катализаторов переработки тяжелого сернистого нефтяного сырья. [c.62]

    Трейбс (Treibs) [152, 141, 142] выделил из некоторых нефтей и асфальтов порфирины и идентифицировал их. В общем его результаты оказались правильны, хотя некоторые его методы и структурные идентификации требуют проверки [153]. Скиннер провел ряд спектроскопических исследований [144] соединений ванадия из калифорнийской нефти Санта Мария и пришел к выводу, что они являются порфириновыми комплексами. [c.47]

    Анализ усовершенствованными методами для — OOR, —ОН, и =С0 групп дал значение для всего кислорода, определенного отдельно как элемент. Это доказало, что образование эфира не является главной реакцией при образовании асфальта окислением воздухом. Эти данные и отдельные приведенные ниже исследования показали, что ангидриды и лактоны не являются нри этом главными компонентами. Анализ показал следующее  [c.543]

    Быстрый рост промышленности асфальтов в связи с потребностями дорожного строительства сделал необходимым создание реального метода окисления различных битуминозных продуктов. Химические исследования не привели к созданию такого метода, а то, что многие важнехотие свойства являются физическими по своему характеру, дало толчок к изучению физической структуры целого ряда битумов. Хотя результаты еще не полные, но они могут быть полезными. [c.544]

    Другое свойство коллоидальных растворов — образование хлопьевидных осадков (коагуляция) также подвергалось исследованию. Здесь также получались зачастую противоречивые результаты. Следует впрочем отметить, что противоречия особенно значительны-в истолковании наблюдаемых фактов. Так например Гольде наблюдал, что при добавлении к оналесцируюпщм бензольным растворам минеральных масел, содержапщх асфальтены, значительных количеств спирта, появляются видимые в ультрамикроскопе частицы, тогда как первоначально таковые не наблюдаются. Отсюда весьма трудно заключить, -чтр первоначальный раствор является коллоидальным, и можно принять, что он становится таковым после обработки спиртом... [c.117]

    Наконец для реализации синтеза нефти из угля надлежало предварительно предпринять ряд исследований, которые показали аналогию между веществами, извлекаемыми растЕорителями из угля, и асфальтами и подчеркнули значение последних как промежуточных продуктов между нефтью и углем. [c.123]

    До недавнего времени большой объем асфальта деасфальтизации гудрона пропаном вовлекался в сырье битумного производства [145]. С повышением требований к температуре размягчения битумов в соответствии с новыми стандартами доля асфальта, используемого в качестве битумного сырья, была снижена для обеспечения температуры размягчения битума с заданной пенетрацней. Большое количество асфальта передано в котельное топливо, что, в свою очередь, предопределяет вовлечение дополнительны.х количеств легких фракций для обеспечения выпуска топлива прежней марки. Так, при выпуске мазута марки 100 включение в его состав асфальта требует одноврем.енно добавления вакуумного газойля в соотношении примерно 1,0 0,5. При этом, конечно, снижается глубина переработки нефти. Была изучена возможность увеличения доли асфальта в битуме при сохранении качества последнего. Исследования проведены на образцах гудрона (вязкость условная при 80°С рав- [c.113]

    Наименее исследованной группой заключающихся в нефти соединений являются асфальтовые и смолистые вещества — важнейшие компоненты природных и искусственных асфальтов. Главная масса этих веществ содержится в так называемом гудроне — вязкой, смолистой массе, остающейся после выделения из нефти легких и масляных фракций. Этот гудрон и по составу, и по своим свойствам очень напоминает природный асфальт и состоит в основном из остатков неотогнанных масел, нейтральных нефтяных смол и асфальтенов и кислых нефтяных смол (асфальтогеновые кислоты). [c.97]

    Асфальто-смолистые вещества являются неотъемлемым компонентом почти всех нефтей. Редко встречающиеся белые нефти представляют собой продукты разной степени обесцвечивания темных смолосодержащих нефтей, мигрировавших через толщи глин из глубоких недр земли. Содержание и химический состав асфальтосмолистых веществ в значительной мере влияют на выбор направления переработки нефти и набор технологических процессов в схемах действующих и перспективных нефтеперерабатывающих заводов. В связи с этим одним из главных показателей качества товарных нефтей при их классификации является относительное содержание асфальто-смолистых веществ. Количество асфальто-смолистых веществ в легких нефтях не превышает 4—5 вес. %, в тяжелых нефтях достигает 20 вес. % и более. Химическая природа асфальто-смолистых веществ точно не установлена. Она продолжает быть предметом глубоких исследований многих нефтехимиков. Причиной этого является исключительная сложность состава этих веществ, которые представляют собой комплексы полициклических, гетероциклических и металлоорганических соединений. [c.32]

    Те немногие химические или, пожалуй, физико-химические ме--тоды, которые применяются в исследовании нефти, предусматривают определение или удаление не индивидов, а целых трупп более или менее однородных веществ, вроде парафина, асфальта и смол, нафтеновых кислот и т. п. Аналитик сплошь и радом вынужден оперировать с веществами совершенно неизвестного состава и строения,, и немудрено поэтому, что в обла)Сти нефтяной химии, как ни в какой другой, получили самое широкое распространение чисто эмпирические приемы исследования, дающие те или иные цифры, которые можно между собою сравнивать, но которые ничего не говорят конкретно. Выделение парафина, асфальтов, смол — все это физические процессы, основанные на некотором различии в свойствах этих веществ и самой нефти. Но химически между твердым парафинам и парафиновым маслом ряда СцН2п- -2> асфальтом твердым и мягким, между смолами и вообще непредельными соединениями часто невозможно провести границу, и точное определение требует постоянно самого тщательного следования рецептуре и методике. Все это создает в области анализа нефти ряд приемов совершенно условных, и еще большой вопрос, ко всем ли нефтям мы имеем одинаковое право прилагать те или иные методы. [c.14]

    Ввиду -затруднительности и даже невозможности хймического исследования смеси веществ, всякое исследование обычно начиналось и начинается с фракциониронки, а так как ей всего легче поддаются легкие фракции нефти, то, естественно, все, что мы более или менее достоверно знаем о нефти, в сущности относится только к ее бензину. Определение парафина, асфальта, смол и т. л. почти нисколько не подвигают вопрос в смысле индивидуализации составных частей [c.55]

    Всякая критика общепринятого способа Гольде может быть интересна и важна постольку, поскольку побуждает к новым исследованиям (В эгоад направлении. Но не надо забывать, что Гольде не претендует на цифры, выражающие абсолютное количество асфальта Б процентах. Получаемые по его методу цифры относительны и вполне достаточно и их для того, чтобы определять достоинство нефти или нефтяного продукта, раз способ, дающий такие относительные цифры, общепринят. Но тогда уже надо раз навсегда строго придерживаться одного и того же метода. Это не соблюдается, напр., Б Америке, где вообще испытание нефтей на содержание асфальта не отличается строгостью осаждение производится десятикратным количеством бензина и осадок замеряется по объему, а не по весу. Ивенс (62) нашел давно, что если бензин действительно хорошо очищен дымящей серной кислотой, то результаты осаждения не зависят от количества осадителя 5—40 объемосв дают тождественные цифры содержания асфальта. Этот неожиданный результат, повиди-мому,, нуждается еще в проверке. [c.85]

    Для испытания твердо- тп. точнее вязкости асфальта, производятся исследования ири помоп и пенетрометра. Предложено много приборов, однотипных в принципе и разли 1аюш,ихся деталями. Здесь описаны типа Доу и Ричардсона, г ак наиболее унотребительные. [c.366]

    Иель исследования — выделить из анализируемого веш ества 1) асфальтогеновые кислоты 2) асфальтены 3) нейтральные смолы 4) масла. [c.335]


Смотреть страницы где упоминается термин Исследование асфальтов: [c.96]    [c.50]    [c.50]    [c.186]    [c.29]    [c.181]    [c.76]    [c.4]    [c.189]    [c.297]    [c.352]    [c.355]    [c.356]    [c.358]   
Смотреть главы в:

Анализ нефтяных продуктов -> Исследование асфальтов




ПОИСК





Смотрите так же термины и статьи:

Асфальтиты

Асфальты

Исследования по химии природных асфальтов

Поконова Ю. В., Митрофанова JI. М., Виноградов М. В. Исследование термической стойкости слабоосновных анионитов из нефтяных асфальтитов



© 2025 chem21.info Реклама на сайте