Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления переноса в идеальном газе

    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]


    Явления переноса в идеальном газе [c.258]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]

    Выше (см. 1) мы утверждали, что малые возбужденные состояния идеально организованной системы частиц можно рассматривать как газ совершенно невзаимодействующих квазичастиц (см. также 3 и 4). В этом случае энергия и характер движения любого элементарного возбуждения совершенно не зависят от того, имеются ли в системе другие возбуждения того же или какого-либо иного типа. Довольно очевидно, что в таком приближении нельзя рассматривать практически важные явления переноса (теплопроводность, электропроводность и др.), так как только взаимодействие между квазичастицами, их столкновение с различными нарушениями периодичности поля решетки могут обеспечить конечность кинетических коэффициентов (X, о и др.), наблюдаемых на опыте. [c.95]


    В достаточно разреженных газах, свойства которых могут быть Описаны уравнением состояния идеального газа, тройные столкновения происходят очень редко и не играют существенной роли в явлениях переноса. [c.554]

    ЯВЛЕНИЯ ПЕРЕНОСА В ИДЕАЛЬНЫХ ГАЗАХ [c.57]

    Таким образом, явления молекулярного переноса — диффузия, теплопроводность и внутреннее трение — имеют один и тот же механизм, связанный с тепловым движением молекул. Согласно кинетической теории идеальных газов коэффициенты диффузии, температуропроводности и кинематической вязкости по порядку величины равны друг другу, т. е. [c.57]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование [c.206]

    Обсуждение результатов. Как уже было сказано, явления переноса в гелии II осуществляются газом тепловых квантов, который при достаточно низких температурах можно рассматривать как идеальный. Упрощая трактовку чрезвычайно сложного комплекса процессов, связанных с явлениями переноса, качественно можно объяснить необычный температурный ход вязкости следующим образом. [c.455]

    На практике приходится иметь дело отнюдь не с идеально чистой водой — в ней имеются ионы растворенных веществ, пузырьки газов и твердые взвешенные частицы. Для облегчения исследования системы стараются выяснить, нельзя ли пренебречь какими-либо компонентами, оставив только один. Так, если можно пренебречь пузырьками газа, а размеры взвешенных частиц малы, то система называется коллоидным раствором, и к ней применяют закономерности коллоидной химии. Если можно пренебречь и пузырьками, и взвешенными частицами, а концентрация ионов мала, то система называется идеальным раствором. Идеальные растворы удовлетворительно описываются клатратной моделью. Явления переноса (диф- [c.18]

    Значит, в идеальной сжимаемой жидкости вихревой эффект невозможен. В основе механизма этого явления должен лежать процесс переноса существенного уменьшения полной энтальпии газовых частиц в стационарном потоке вязкого газа, чего не происходит. Следовательно, центробежный поток энергии является результатом процесса переноса тепла, что возможно только при наличии в газе радиальных фадиентов температур. Изменение средних значений полных энтальпий потоков обусловлено не теплопроводностью, а только внутренним нротивоточным теплообменом встречных потоков. Это происходит в результате турбулентного перемещения газа в вихре, периферийные слои которого имеют наибольшую скорость и самую низкую статическую температуру. Выравнивание угловой скорости — результат фения, что ведет к росту давления в приосевой области. Из зоны повышенного давления берет начало центральный поток при движении в сторону диафрагмы. [c.22]

    Как мы видели в разделе IV. 2, движение газа (жидкости) в неподвижном зернистом слое несколько отличается от схемы идеального вытеснения и необходимо учитывать продольную диффузию и дисперсию. Аналогичные явления должны наблюдаться и в псевдоожиженном слое. Имеются и некоторые существенные отличия. С одной стороны, в псевдоожиженном слое частицы несколько раздвигаются и должны исчезнуть тупиковые и застойные газовые области, ответственные за различие стационарной и нестационарной диффузии в неподвижном слое. С другой стороны, движущиеся частицы в какой-то степени переносят с собой непосредственно окружающую их газовую оболочку (пограничный слой), что является дополнительной причиной обратного перемещивания газа против потока. Впрочем, как показывает опыт [182], этот дополнительный механизм может оказаться существенным практически лишь для зерен, сорбирующих диффундирующую примесь в одних зонах реактора и десорбирующих ее обратно в других участках. Наконец, в псевдоожиженном слое следует еще учитывать перенос определенных порций газа в виде пузырей и массообмен примесью между пузырями и окружающей их псевдожидкостью. [c.316]


    Напомним ход выводй соотношений молекулярной диффузии (по элементарной кинетической теории). Диффузия и другие явления переноса в газах (вязкость, теплопроводность) связаны с тепловым движением молекул. В установившемся равновесном состоянии распределение скоростей молекул газа отвечает распределению Максвелла (газы в дальнейшем будем рассматривать как идеальные). Средняя тепловая скорость молекул при максвелловском распределении [c.63]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Газ мы по-прежнему будем считать разреженным (идеальным), так что выполняется условие где N — концентрация молекул газа, а — сечение рассеяния частиц (см. начало гл. 1). В слабоионизованном газе представляют интерес явления переноса заряженных частиц, в частности под действием внешнего электрического поля, а также процессы образования и разрушения заряженных частиц в результате соударений электронов с молекулами. [c.31]

    Применение кинетической теории газов для интерпретации явления испарения позволяет создать теорию процесса испарения. Первые попытки количественной оценки скорости, с которой вещество из конденсированной фазы переходит в газообразную, связаны главным образом с именами Герца, Кнудсена и Ленгмюра. Наблюдение отклонений от первоначально постулированной идеальной модели привело к уточнениям механизма переноса, которые стали возможны после возросшего понимания молекулярного и кристаллического строения вещества. Теория испарения включает в себя элементы кинетики реакций, термодинамики и теории твердого тела. Вопросы, связанные с направлением движения испаренных молекул, были решены в первую очередь с помощью вероятностного рассмотрения эффектов кинетики газов и теории сорбции. [c.37]

    Для объяснения экспериментальных данных по гидродинамиче-скому перемешиванию был выдвинут ряд моделей зернистого слоя. Наиболее удачной оказалась дискретная ячеистая модель, которая согласуется с описанной выше гидродинамической картиной течения в слое. Первоначальным вариантом дискретной модели была модель ячеек идеального смешения [12, 16], хорошо объяснившая данные по продольному перемешиванию в потоках газа. Для описания про- дольного перемешивания в потоках жидкости, где наблюдаются более сложные зависимости эффективного коэффициента продольной диф-, фузи от скорости потока, были выдвинуты различные варианты моделей с застойными зонами. Первой моделью этого типа была модель Тернера—Ариса [17]. Согласно этой модели зернистый слой рассматривали как канал постоянного поперечного сечения, характеризующийся определенными значениями линейной скорости по- тока и коэффициента продольной диффузии, от стенок которого отходят тупиковые каналы-ответвления, где по предположению, конвекция отсутствует и перенос вещества осуществляется только путем молекулярной диффузии. В последующих работах [18] застойные явления рассматривали в рамках ячеистой модели. Метод анализа таких систем, использующий аппарат характеристических -функций, был указан в работе Каца [19]. Расчеты но различным вариантам моделей с застойными зонами позволили объяснить наблюдаемые в потоках жидкости пониженные значения числа Ре ц и наличие хвостов у функций распределения времени пребывания в слое. Недостатком этих работ является, однако, то, что физический смь л застойных зон в них не конкретизируется вследствие этого оказалось невозможным выявить непосредственную связь характеристик продольного перемешивания с параметрами зернистого слоя и провести количественное сравнение теории с экспериментом. Готтшлих [20], пытаясь придать модели Тернера—Ариса физиче- ское содержание, предположил, что роль тупиковых каналов или застойных зон играет диффузионный пограничный слой у поверхности твердых частиц. Оценка толщины диффузионного слоя, необходимой для объяснения экспериментальных данных по продоль-) ному перемешиванию, не совпала, однако, с толщиной диффузионного пограничного слоя, оцениваемой на основе измерения коэффициента массопередачи (см. раздел VI.3). Это несоответствие было отнесено автором на счет влияния распределения толщины диффузионного слоя на неравнодоступной поверхности твердых частиц. Экспериментальное исследование локальных коэффициентов массопередачи в зернистом слое показывает [7 ], что в нем имеются области, массопередача к которым резка затруднена — зоны близ точек соприкосновения твердых частиц. Расчет по модели ячеек с застойными зонами близ точек соприкосновения твердых частиц [21 ] позволил [c.220]


Смотреть страницы где упоминается термин Явления переноса в идеальном газе: [c.220]   
Смотреть главы в:

Физическая химия -> Явления переноса в идеальном газе

Физическая химия -> Явления переноса в идеальном газе

Физическая химия изд №2 -> Явления переноса в идеальном газе




ПОИСК





Смотрите так же термины и статьи:

Газы идеальные

Явления переноса

Явления переноса в газах



© 2025 chem21.info Реклама на сайте