Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение частиц теория

    Иначе говоря, в случае малых давлений пара скорость испарения практически не зависит от наличия или отсутствия обратного потока частиц, т. е. не зависит от присутствия пара над конденсированной фазой, и испарившиеся молекулы весьма редко будут возвращаться обратно к поверхности испарения. Тогда, используя законы кинетической теории газов, можно, как мы это сделали для конденсации паров воды ниже тройной точки, получить формулу для определения скорости испарения льда с открытой поверхности в вакуум. [c.181]


    Возможность испарения частиц жидкости в сферическую дырку учитывается только через разность между внешним давлением р и давлением пара жидкости ро, причем результирующее давление направлено наружу. При нагревании жидкости до точки кипения Ро становится больше р, так что в соответствии с формулами (60) и (64) возрастает вероятность нахождения круп ных дырок в дырочной теории эти крупные дырки, наполненные паром, отождествляются с обычными пузырьками, которые наблюдаются во время кипения. [c.123]

    Согласно теории жидкостей, развитой Я.И. Френкелем, эта энергия для частиц, близких по симметрии к сферической, составляет примерно половину теплоты испарения жидкости, т.е. -10—20 кДж-моль .  [c.120]

    Таким образом, диффузионная теория индивидуального роста и растворения (испарения) частиц, механически перенесенная на коллектив частиц, не может объяснить наблюдаемого нами факта, суть которого заключается в том, что в коллективе мелкие частицы растут медленнее, а растворяются быстрее, чем крупные, т. е. диффузионная теория не может объяснить колебательного механизма рекристаллизации в дисперсных системах. [c.92]

    Теория растворения мелкодисперсных частиц аналогична теории испарения жидкой капли. Растворимость мелкодисперсных частиц повышается по сравнению с крупными частицами, и это повышение можно описать уравнением типа (14.15)  [c.276]

    В теории многофазных систем [1] может быть з теп (как изменение фазы) любой процесс превращения частицы в частицу д вследствие процессов конденсации [1] и испарения вещества отдельной частицы, коалесценции частиц или дробления частицы на более мелкие. [c.191]

    К выводу о том, что капиллярные силы и силы поверхностного натяжения не являются основными факторами, определяющими свойства пленок, пришел С. С. Воюцкий [28, 29, 38]. В результате обобщения различных механизмов пленкообразования, рассмотренных в указанных теориях, он пришел к выводу, что процесс пленкообразования из дисперсий полимеров является многостадийным и связан с проявлением тех или иных сил на различных этапах пленкообразования. Решающее значение отводится последней стадии пленкообразования, когда из пленки полностью удаляется вода. Согласно этим представлениям процесс пленкообразования из латексов протекает в три стадии. На первой стадии происходит испарение воды и сближение латексных частиц до соприкосновения под действием сил поверхностного натяжения при этом предполагается, что каучуковые латексы могут деформироваться до исчезновения жидких прослоек. На второй стадии удаляется вода из пространства между частицами, что приводит к их деформированию. На этой стадии большое значение придается силам поверхностного натяжения и действию капиллярного давления. Это способствует уменьшению поверхности внутренних полостей между соприкасающимися частицами. Взаимодействие частиц происходит по участкам поверхности, не покрытым поверхностно-активным веществом. Наиболее важной стадией, определяющей структуру и свойства пленок, является третья, связанная с перераспределением поверхностно-активных веществ и коалесценцией частиц. Предполагается, что защитное вещество адсорбционного слоя уходит с поверхности. Свободные концы макромолекул могут при этом диффундировать через уплотненную поверхностную пленку сливаю- [c.198]


    Второй этап взаимодействия быстрой частицы со сложным ядром сводится к тому, что оставшееся возбужденное ядро испаряет частицы в соответствии с термодинамической теорией испарения ядра. [c.639]

    В аспекте квазиклассической теории газов, изложенной в предьщущей главе, вышеуказанное понимание энтропийной константы не является самоочевидным. Идеальный газ вследствие предполагаемого отсутствия сил взаимодействия между частицами не должен конденсироваться ни при каких температурах поэтому, применив к идеальному газу методы квантовой статистики и установив, что в выражение энтропии входит член, не зависящий от температуры, казалось бы, мы не имеем права истолковывать этот член как энтропию газа по отношению к кристаллу. Здесь ощущается некоторая неясность, которую формально можно устранить ссылкой на закон Нернста. А именно мы могли бы истолковать энтропийную константу как энтропию идеального газа в состоянии 1 К и р = 1 атм по отношению к какому-то такому состоянию газа при 0° К, когда, в согласии с законом Нернста, его энтропия равна нулю. Однако, имея в виду газы, действительно существующие в природе, упомянутое нулевое состояние газа мы ни в коем случае не может отождествить с состоянием бесконечно разреженного насыщенного пара при абсолютном нуле. При понижении температуры до абсолютного нуля теплота испарения г отнюдь не стремится к нулю, но приближается к характерной для каждого вещества величине г . А так как [c.197]

    Изложенная здесь теория коагуляции в диффузионном режиме применима лишь к аэрозолям с г 0,1 мк. Для более мелких частиц в теорию следует ввести поправку на скачок концентрации у поверхности поглощающей сферы, аналогичную поправке в теории испарения мелких капелек (см. стр. 100). Для аэрозолей же с г 0,001 ммк (10 А) коагуляция идет в газокинетическом режиме, т. е. скорость ее выражается известной формулой для числа столкновений между газовыми молекулами, см. (Прим. ред.) [c.150]

    Основываясь на этих экспериментах и наблюдениях , Дальтон в 1801 г. выступил с теорией конституции смеси газов , в частности атмосферы. В четырех докладах, представленных Манчестерскому литературному и философскому обществу (о конституции смеси газов о давлении водяного пара и паров других жидкостей в зависимости от температуры об испарении о расширении газов при нагревании), он широко развил свои прежние положения о смесях флюидов как физических смесях, в которых не образуются химические соединения. Не отвечая пока прямо на вопрос, волновавший в то время физиков, почему в смесях газы, обладающие различной плотностью, не расслаиваются, Дальтон, однако, уже приводит некоторые объяснения этого явления и даже аргументирует их с точки зрения более общих положений науки. В частности, он привлекает для объяснения корпускулярные представления, высказывая весьма важное положение, что частицы одного из эластичных флюидов смеси отталкиваются от других частиц с такой же силой, с которой они отталкиваются друг от друга в свободном газе, занимающем тот же самый объем. Иными словами, частицы раз- [c.28]

    Кинетическую теорию испарения, как процесс эмиссии частиц, предложил В. В. Шулейкин [67 ]. Кинетическое уравнение испарения для наибольшей плотности потока массы жидкости можно записать в виде [c.45]

    Переход твердых тел или жидкостей в газообразное состояние может быть рассмотрен как с макроскопической, так и с микроскопической точек зрения. В первом случае рассмотрение основывается на термодинамике и приводит-к количественным характеристикам скорости испарения, взаимодействия между испаряемым веществом и веществом испарителя, стабильности соединений, а также изменения состава сплавов в процессе испарения. Во втором случае рассмотрение основывается на кинетической теории газов и предлагает физическую модель процесса испарения, которая описывается свойствами индивидуальных частиц. Это рассмотрение в полной мере применимо для процессов откачки газов и, следовательно, связано с содержанием гл. 2. Несмотря на то, что термодинамика и кинетическая теория газов подробно рассмотрены в ряде монографий, некоторые разделы этих теорий, имеющие непосредственное отношение к вакуумному испарению, будут обсуждены в этой главе здесь же будут приведены уравнения, наиболее часто применяемые для описания этих процессов. [c.15]

    Так как форма капель диаметром 1—2 мм, на которых обычно проводятся измерения скорости испарения, несколько отличается от сферической, то следует рассмотреть также испарение несферических частиц. Кроме того, излагаемая здесь теория применима, конечно, и к испарению твердых частиц, которые могут иметь любую форму. То обстоятельство, что поверхность твердых частиц нередко делается при испарении неровной (на [c.15]

    В теории испарения несферических частиц целесообразно воспользоваться электростатической аналогией, упомянутой на стр. 10. При этом положим для упрощения Соо=0. [c.16]

    При обработке сельскохозяйственных культур грубодисперсным аэрозолем методом волны численные концентрации капелек обычно малы и коагуляцией можно пренебречь. При использовании масляных препаратов и прочих нелетучих жидкостей можно пренебречь и испарением (распространение испаряющихся частиц рассмотрено в главе IV). Это позволяет использовать для анализа распространения аэрозоля современную теорию конвективной диффузии примеси в атмосфере. [c.60]


    Результаты, полученные при рассмотрении задачи о поглощающем центре, применяются к целому ряду процессов. Из этих процессов наиболее обстоятельно изучены рост и испарение капель и коагуляция взвешенных в жидкости или воздухе частиц. Развитие теории этих процессов способствовало выяснению ряда принципиальных вопросов диффузионной кинетики. [c.34]

    Поведение сухих гигроскопических частиц при постепенном увеличении ваажности проходит через следующие стадии I) частицы адсорбируют несколько молекулярных слоев в таги 2) частицы растворяются, превращаясь в капельки насыщенного раствора, и одновременно резко увеличивается их размер, 3) капельки раство ра растут, становясь все более разбав пенными Если теперь постепенно снижать влажность то размер капеггек сначала умень шается, и затем, при влажности значительно более низкой, чем та, при которой произошло растворение, они рекристаллизуются, резко уменьшаясь в размере С негигроскопичными частицами ни растворения, ни рекристаллизации не происходит Орр Херд и Корбетт рассчитали прирост и потерю влаги для субмикронных частиц хлоридов натрия, калия и кальция сульфата аммония и иодидов серебра и свинца при изменении влажности Они показали, что расчеты роста и высыхания частиц, основанные на термодина мике и теории адсорбции, удовлетворительно согласуются с экспе риментальными данными Некоторые микрогравиметрические изме рения скорости регидратации частиц хлорида натрия при различной влажности, а также теория испарения и регидратации капелек водных растворов приведены в работе Крайдера и др [c.109]

    Продемонстрируем теперь применение общей теории случайных процессов на случаях совсем иного рода, чем броуновское движение частицы. В качестве первого примера рассмотрим поведение очень маленькой капли в пересыщенном или насыщенном паре. В зависимости от числа сконденсировавшихся и испаренных молекул размеры такой капли могут меняться случайным образом. [c.104]

    Концепции И. Странского и В. Косселя были развиты М. Вольмером (и рассмотрены в работе [66]), предложившим теорию постадийного испарения. Частицы в зависимости от своего расположения имеют различную энергию связи с поверхностью. При нагревании происходит миграция частицы из прочносвязанного состояния с наибольшим числом соседей в менее прочносвязанное (на ступеньку), затем в адсорбированный слой и, наконец, в пар, Лишь незначительное число частиц имеет вероятность прямого испарения , а обычно сублимация является ступен-чатым процессом, для которого необходима дополнительная энергия активации. [c.75]

    При г. газифицирующихся конденсированных систем (напр., твердых и жидких ВВ) происходит интенсивное газовыделение вследствие испарения горючего или его хим. разложения, обусловленных потоком тепла из зоны г. Ведущая Г. экзотермич. р-ция может протекать в образующейся газовой фазе (т. наз. летучие системы) либо в конденсиров. фазе (нелетучие системы) Стационарное Г. летучих систем описывается той же теорией, что и Г. газовых смесей с заранее перемешанными компонентами. В нелетучих системах выделение большого кол-ва газообразных продуктов может приводить к мех. разрушению и диспергированию в-ва вблизи пов-сти. В результате зона р-ции сильно растягивается и тепловыделение происходит в осн. в мелкодисперсной смеси частиц горючего и продуктов его первичного хим. разложения. Линейные скорости и [c.597]

    В отличие от выпуклой поверхности жидкости, легко реализуемой в аэрозолях в форме шарообразных частиц различных размеров, вогнутая поверхность жидкости не может быть получена без участия стенок твердого тела. Поэтому в общем случае адсорбционное поле, создаваемое стенками мезопор адсорбента, оказывает влияние как на толщину адсорбционного слоя, так и на кривизну равновесного вогнутого мениска жидкости. Теория этого явления была опубликована Дерягиным в 1940 г. и почти 30 лет спустя, в 1967 г., де Бур и Брук-гоф смогли приближенно учесть влияние адсорбционного поля стенок пор на химический потенциал сорбированного вещества при выводе усовершенствованного уравнения Кельвина [5 — 8]. Автор [9, 10] делает попытку приближенного развития метода Дерягина, Брукгофа и де Бура путем дополнительного учета зависимости поверхностного натяжения от среднего, радиуса кривизны мениска жидкости. Рассмотрение капиллярного испарения ведется для эквивалентной модели адсорбента (эквивалентного модельного адсорбента) с цилиндрическими порами. [c.103]

    По мнению авторов [94, 125] все приведенные предпосылки и теории являются в принципе правильными. Каждый из рассмотренных механизмов в зависимости от конкретных свойств объектов сушки и условий тепло- и массообмена с окружающей средой вносит свой вклад в формо- и структурообразование частиц при сушке капель жидких материалов. В частности, не вызывает сомнений внедрение пузырьков воздуха в капельки в момент распыления жидкости. После образования твердофазного поверхностного слоя в нем действуют одновременно силы, обусловленные внутренним испарением и раздуванием оболочки (по Маршаллу) и продавливанием корки внутрь частицы (по Томану). Если количество тепла, подводимого к капле от газа, равно количеству тепла, отводимого от капли с испаряющейся влагой (эквивалентный теплообмен), то в формировании структуры частицы будет преобладать механизм Томана. Если же количество тепла, передаваемого от газа к капле, больше количества тепла, отводимого испаряемой влагой (неэквивалентный тепломассообмен), то избыток тепла пойдет на нагрев капли и приведет к внутреннему парообразованию, нередко сопровождающемуся кипением жидкой фазы. В последнем случае давление паров при наличии плохо паропроницаемой эластичной пленки приведет к раздутию частицы, а при жесткой непористой корке - к разрушению, т.е. будет преобладать механизм Маршалла. [c.119]

    Из этой теории следует, что величина п в таких уравнениях сильно зависит от механизма переноса (испарение, поверхностная диффузия, объемная диффузия, пластическая деформация), посредством которого вещество передается к более стабильным, более крупным частицам. Последние увеличиваются за счет менее крупных и менее стабильных частиц из числа частиц небольших размеров. Однако эмпирическая величина п, наблюдавшаяся Шлаффером и другими, во многих случаях оказывается больше значений, ожидаемых на основании теории Герринга. Эти большие значения, вероятно, отражают влияние факторов, которые не были учтены при теоретическом рассмотрении. Исключительно большие значения п (от 20 до 35) наблюдались в разных стадиях дезактивации катализатора в потоке сухого воздуха при высоких температурах. Предполагается, что появление этих аномально высоких значений связано с процессом, который ускоряет старение в результате освобождения водяного пара при взаимодействии между гидроксильными группами в катализаторе. В ходе дезактивации выделяется все меньше и меньше пара, и процесс заметно тормозится. Действительно найдено, что последние стадии дезактивации в этих условиях могут описываться более правдоподобным, с точки зрения теории Герринга, значением п (приблизительно равным 4). [c.70]

    Поляни и Вигнером [104] предложена теория прямого испарения , согласно которой процесс сублимации рассматривают как прямой переход любой молекулы с поверхности конденсированного вещества в пар. На поверхности вещества молекулы связаны между собой энергией, равной энергии сублимации. Коссель [105] иСтранский [106] показали, что разные частицы на поверхности имеют различное число соседей и поэтому неодинаково связаны с поверхностью. Вероятность перехода частицы в газовую фазу также не может быть одинаковой для всех частиц на поверхности. [c.75]

    Следует упомянуть, что процесс непосредственного сажеобра-зования в углеводородных пламенах некоторые исследователи объясняют капельной теорией сгорания [22]. Свободные углеводородные радикалы в процессе гидрогенизации и конденсации образуют вначале простые, затем более сложные высокомолекулярные полициклические ароматические соединения с низким давлением насыщенных паров даже в условиях пламени. Такие полициклические соединения формируются внутри капли топлива в виДе ядра, которое по мере испарения оболочки дегидрируется с образованием сажевой частицы. [c.309]

    В связи с этим первая часть книги посвящена теоретическим вопросам вакуумной техники. Здесь рассматриваются вопросы вакуумной проводимости, теории теплообмена без фазовых превращений, испарения и конденсации как в присутствии неконденсирующихся газов, так и в присутствии заряженных частиц и квантов энергии в условиях вакуума. Вопросам сублимации и конденсации ниже тройной точки уделено больше внимания, чем другим проблемам, так как по этим вопросам опубликовано весьма мало работ как в СССР, так и за границей, несмотря на острую необходимость в таких данных при расчете теплообменной вакуумной аппаратуры. В то же время по конденсации и испарению водяного пара ниже тройной точки в НИИХИММАШе и МИХМе на кафедре теоретических основ теплотехники длительное время проводятся исследования и собран нужный материал для конструкторов и эксплуатационников. [c.4]

    Сложности теории испарения, конденсации и адсорбции связаны с определением значения коэффициента аккомодации [67]. Примеры попытор квантовомеханического расчёта этой величины имеются в литературе. Л. Д. Ландау считал существенным, что при столкновении частицы газа с поверхностью конденсированного тела частота столкновений по порядку величины обратна времени взаимодействия частицы с поверхностью. Так как частота соударения существенно меньше максимальных частот [c.45]

    Если определить скорость сублимации в присутствии неконденсирующихся газов ЦО формуле (302), которая хорощо описывает процессы сублимации в условиях абсолютного вакуума по неконденсирующемуся газу, то расчетные данные не будут совпадать с экспериментальными. Несовпадение теории с экспериментом объясняется тем, что молекулы газа, присутствующие в объеме аппарата, оказывают влияние-на интенсивность процесса сублимации. В высоком вакууме по пару процесс движения иснаривщихся молекул обусловлен только тепловой энергией молекул. На границе поверхности сублимируемого вещества, находящегося внутри аппарата, не образуется слоя с более высокой плотностью, чем в любой другой точке объема. Молекулы газа внутри объема аппарата обладают больщей энергией, чем молекулы пара на поверхности сублимируемого льда. Кроме того, молекулы газа, попадая в поле действия полярных молекул, подвергаются поляризации. Молекулы газа с большой энергией способны с одной стороны разрушать кристаллические решетки на поверхности сублимируемого материала, ас другой — ассоциироваться со свободными. молекулами пара,, потерявшими связь с молекулами твердого вещества, и переходить, в ассоциированном состоянии в парообразную фазу. Здесь отрицательно активные молекулы газа выполняют роль транспортера — переносчика молекул пара с поверхности сублимируемого вещества в окружающую среду, подобно тому, как положительно активные молекулы при конденсации пара являются переносчиками молекул пара из объема к поверхности конденсации. Отрицательно активные молекулы как бы бомбардируют сублимируемое вещество. В местах падения этих молекул, где разрушаются кристаллические решетки, до предела ослабляются силы взаимодействия между молекулами. В результате этого создаются благоприятные условия для перехода молекул из твердого состояния в газообразное и ДЛ Я миграции молекул пара на сублимируемой поверхности. Этот переход совершается как отдельными и ассоциированными молекулами пара, так и комплексными частицами. Ядром комплексной частицы является отрицательно активная молекула, адсорбирующая на своей поверхности молекулы пара. Как показали экспериментальные исследования, проводимые в МИХМе под руководством А. А. Гухмана, поверхность сублимируемого вещества после-испарения оказывается испещренной очень мелкими, но отчетливо выраженными впадинами [48]. [c.185]

    В термоионном источнике вещество испаряется с поверхности, а так как скорость испарения является функцией массы частиц, то происходит фракционирование. Этот эффект заметно проявляется при анализе лития, где относительная разница в массах двух изотопов с массами 6 и 7 велика и составляет около 8%. Интенсивный ионный ток, соответствующий ионам Li, получается при нагревании солей лития на вольфрамовой или танталовой нити. Так как более легкий изотоп испаряется быстрее, чем тяжелый, то измеренное вначале отношение Li/ Li равно примерно 11,4, а затем оно возрастает по мере того, как остаток образца обедняется более легким изотопом. Простая теория испарения указывает, что начальная величина 11,4 к концу исиарения возрастет на 8%. Это находится, в общем, в соответствии с наблюдаемыми результатами. Имеется, однако, расхождение между величиной 8% и результатами Шютце [5], который указывает величину 9%. Эффект фракционирования является, несомненно, источником ошибок. Метод, использованный нами для анализа лития в трехнитиом источнике, позволяет устранить этот недостаток. Если нитрат лития испаряется при низкой температуре и попадает иа очень горячую вольфрамовую поверхность, то появляются ионы Li. Отношение токов ионов с массами 7 и 6 остается при этом постоянным в течение всего времени жизни образца [6]. [c.100]

    В разд. 5.2 было показано, что объем ядра пропорционален массовому числу А, т. е. общему числу нуклонов. В результате плотности всех ядер примерно одинаковы ( 10 г/слгЗ),Вэтом отношении, так же как при вращении, рассмотренном в предыдущем абзаце, ядра проявляют формальную аналогию с жидкими каплями. Эту аналогию можно продолжить дальше, создав третью модель ядра. Она, однако, намного менее применима для объяснения свойств ядра, чем оболочечная или обобщенная модели. Тем не менее такая модель имеет преимущества при рассмотрении ядерных реакций. В соответствии с этой моделью вхождение в ядро нуклона, отдающего ядру свою энергию, сравнивают с нагреванием капли, а последующее излучение а-, р- или у-частиц сравнивают с процессом испарения. Капельная модель особенно удобна для объяснения процесса деления, который происходит, иапример, в результате бомбардировки нейтронами. Вхождение в ядро нейтрона деформирует первоначально сферическое ядро из-за увеличивающихся колебаний. Положительно заряженные протоны стремятся сконцентрироваться на поверхностях, имеющих наибольшую кривизну (элементарная теория электростатики). Это приводит к тому, что заряд концентрируется на противоположных концах деформированного ядра, повышая неустойчивость и приводя в конечном счете к разрыву ядра пополам. Нейтроны остаются на перемычке, соединяющей две половинки ядра и отделяются от яд- [c.144]

    В [1, 20, 23, 24] дан обзор работ по физико-математическому моделированию воспламенения мелких частиц магния. Методами элементарной теории катастроф и численно исследовано это явление в рамках точечной и распределенной моделей, учитывающих гетерогенную химическую реакцию. В то же время в литературе имеются указания на важность учета испарения металла и его окисла с поверхности частицы. Это явление не принималось во внимание в указанных работах. Изучение этого процесса представляет интерес и с точки зрения общей теории теплового взрыва систем с двумя химическими реакциями, протекающими с различными характерными временами и энергиями активации [26]. Данный раздел посвящен анализу многообразия катастроф (воспламенений) для модели теплового взрыва Mg-чa тицы, учитывающей испарение металла, и определению на ее основе типов тепловой динамики частицы в плоскости бифуркационных параметров модели, а также сопоставлению расчетных данных по различным моделям. [c.41]

    Современные теории пластификации, свидетельствующие о том, что пластифицированный полимер обладает гелеподобной структурой и пластификатор снижает взаимодействие цепей в местах контакта и/или зацеплений, не исключают возможности возникновения включений пластификатора неопределенно малых размеров, диспергированных в полимерной матрице. Тем не менее автор считает, что обычные пластифицированные полимеры такие как ПВХ, не следует относить к макро- или микрокомпозиционным материалам. Однако существуют другие смеси полимеров и жидкостей, которые могут быть без сомнения отнесены к композиционным материалам. Так, сетчатые полимеры, получаемые поликонденсацией, например отверждаемые фенолоформальдегидные смолы могут содержать тонкодиспергированные частицы воды, сохраняющиеся в течение нескольких лет. В случае литых изделий из фенолофор-мальдегидных ненаиолненных смол предпринимались большие усилия для сохранения и стабилизации такой гетерофазной структуры, при которой материал не растрескивался при испарении воды. Около 10 лет назад в промышленных масштабах с большим успехом начали использовать водонаполненные полиэфирные смолы (патент США 3,256.219). Воду диспергировали [22 в смоле в виде сферических частиц диаметром 2—5 мкм с концентрацией, достигающей 90%. Такие материалы использовали для замены гипса и древесины, а также в качестве теплозащитных абляционных покрытий. [c.39]

    Первая попытка объяснить катодное распыление заключалась в предположении, что это явление представляет собой простое испарение вследствие нагревания всего катода в разряде [1529]. Такое объяснение пришлось отбросить, так как температура катода в тлеющем разряде для этого далеко не достаточна, а искусственное охлаждение катода не ведёт к уменьшению интенсивности распыления. Предположение о том, что катодное распыление во всех случаях имеет чисто химическую природу и является каким-то аналогом электролизу [1520, 1521], тоже было опровергнуто. Наиболее правлополобной казалась чисто механическая теория распыления [1530, 1531], допускавшая, что положительный ион непосредственно передаёт свою кинетическую энергию какому-либо атому по законам упругого удара и этот атом покидает поверхность металла, отразившись от соседних атомов. Однако последовательное проведение такого представления не даёт количественно правильных результатов. Не решили вопроса и несколько более сложная картина нескольких последовательных попаданий ионов в одно и то же место на поверхности катода, предложенная Ленгмюром, а также предположения о том, что распыление носит характер небольших взрывов в металле. Предполагали, что такие взрывы могут быть вызваны преувеличением давления газовых включений [1532] при нагреве газа или давлением ионов , проникших в металл и скопившихся в большом количестве в очень малом объёме [1533]. Отрыв более крупных частиц от металла, свидетельстиующий о локальном взрыве, действительно иногда имеет место, но представляет собой лишь побочное явление и, как правило, не может служить объяснением явления катодного распыления ввиду установленного экспериментально атомного характера распыляемых частиц. [c.469]

    Микроскопическая модель процесса испарения основывается на кин тической теории газов, которая рассматривает газ как систему, состоящую из большого числа атомов или молекул одинаковой массы и радиуса. В большинстве случаев формой и внутренней структурой этих частиц можно пренебречь и рассматривать молекулы как упругие шарики, диаметр которых много меньше среднего расстояния между ними. Кроме того, предполагается, что молекулы находятся в состоянии непрерывного беспорядочного движения, сталкиваясь друг с другом и с окружающими их стенками сосуда. По аналогии с уравнением для идеального газа, описывающим макроскопическое поведение газа, в микроскопической модели предполагается, что между молекулами, за исключением момента столкновения, отсутствуют силы взаимодействия. В соответствии с микроскопической моделью давление газа на стенки сосуда возникает вследствие передачи стенке сосуда импульса от каждой молекулы при их столкновении. [c.23]


Смотреть страницы где упоминается термин Испарение частиц теория: [c.315]    [c.192]    [c.370]    [c.57]    [c.110]    [c.45]    [c.251]    [c.37]    [c.57]    [c.175]   
Аэрозоли-пыли, дымы и туманы (1964) -- [ c.99 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.99 ]




ПОИСК







© 2025 chem21.info Реклама на сайте