Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод валентных связей . 6. Теория кристаллического поля

    Метод молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как метода валентных связей, так и теории кристаллического поля. Так, из рис. 78 следует, что шести а -орбиталям окта- [c.125]

    Теория поля лигандов объединяет в той или иной мере идеи теории электростатического взаимодействия, метода валентных связей, теории кристаллического поля и метода молекулярных орбиталей. Теории поля лигандов и молекулярных орбиталей способны объяснить строение комплексов, энергию связи, магнитные свойства комплексных ионов, их окраску (спектральные свойства), а также иногда объяснить реакционную способность комплексных соединений. [c.210]


    По методу валентных связей с учетом теории кристаллического поля определите тип гибридизации орбиталей центрального атома и предскажите геометрическую форму для следующих комплексов  [c.124]

    Метод валентных связей не позволяет объяснить состав, строение и свойства всего многообразия комплексных соединений. Значительно шире используются теории кристаллического поля и молекулярных орбиталей. [c.76]

    Теория кристаллического поля, наоборот, основывается на чисто электростатической модели. Однако в отличие от первоначальной теории Косселя и Магнуса здесь рассматриваются изменения в электронных оболочках иона-комплексообразователя, происходящие под действием лигандов. Эта теория оказалась чрезвычайно плодотворной. В настоящее время она имеет значительно большее применение, чем метод валентных связей. [c.218]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    В настоящее время существуют три основные теории, рассматривающие комплексные соединения метод валентных связей, теория кристаллического поля и метод молекулярных орбиталей. [c.42]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]


    В настоящее время природу координационной связи можно описать тремя методами методом валентных связей, теории кристаллического поля и методом молекулярных орбиталей. Суть двух из них была изложена в общем виде в гл. 6 Химическая связь . Здесь мы остановимся на применении этих теорий к объяснению связи в координационных соединениях. [c.378]

    Прогресс в области координационной химии, например углубление знаний о природе химической связи, о стереохимии или спектрах поглощения координационных соединений, должен быть одновременно и прогрессом аналитической химии. Однако это возможно лишь в том случае, когда разрыв — по времени и по уровню — между достижениями химии координационных соединений и их аналитическим использованием оказывается не слишком большим. Известно, что за последнее время в теоретической неорганической химии произошел большой сдвиг, который помог преодолеть довольно длительный период фактического застоя. Химия координационных соединений, которая, несмотря на наличие вернеровской структурной теории, была в значительной мере описательной наукой, приобрела солидный теоретический фундамент. Метод валентных связей, теория кристаллического поля и особенно метод молекулярных орбиталей позволили объяснить многие факты, накопленные химиками, и дали вполне ощутимую возможность предсказывать ряд свойств координационных соединений. [c.5]

    Устойчивость комплексных соединений в растворах. Константы устойчивости и константы нестойкости. Факторы, влияющие на устойчивость комплексных соединений в растворах температура, хелатный и макроциклический эффекты, заряд центрального иона-комплексообразователя. Теория координационной химической связи метод валентных связей, теория кристаллического поля. Спектрохимический ряд лигандов, энергия стабилизации координационных сфер катионов -металлов. Цвет комплексных соединений и кинетическая подвижность лигандов в координационной сфере. [c.214]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей, теорию кристаллического поля и метод молекулярных орбиталей. [c.293]

    Таким образом, теория кристаллического поля устанавливает количественную связь между магнитными и спектральными характеристиками комплексов, что не удается сделать при помощи метода валентных связей. [c.48]

    Вопрос о строении комплексных соединений можно обсуждать с электростатической точки зрения, при помощи теории кристаллического поля, используя модели донорно-акцепторных и дативных связей в методе валентных схем или метод молекулярных орбиталей (МО). Идеи и выводы каждого из методов с успехом применяются в характерных для них сферах химии координационных соединений, но приближенный характер методов ограничивает их применение. [c.17]

    Каковы принципиальные отличия теории кристаллического поля и теории поля лигандов Что общего в этих теориях Какие положения методов валентных связей и молекулярных орбиталей эти теории заимствовали  [c.70]

    Механизм образования комплексных соединений, прежде всего взаимодействие между комплексообразователем и лигандами, природа связи между ними, в современной химии описывается с помощью различных квантовомеханических методов — метода валентных связей, электростатических представлений (теории кристаллического поля), метода молекулярных орбиталей и теории поля лигандов. [c.167]

    Наиболее широко используют метод валентных связей (ВС), метод молекулярных орбиталей (МО) и теорию кристаллического поля, которая нашла наибольшее применение для описания комплексных соединений (см. гл. X). [c.35]

    Теперь можно продолжить исследование теорий химической свя- и. Метод валентных связей будет рассмотрен первым, так как по основным положениям он наиболее простой и прекрасно служит U течение более четверти века для объяснения некоторых свойств комплексов. Даже сейчас, когда недостатки этого метода ясно видны, большое число химиков все еще находит его удобным для интерпретации и сопоставления своих результатов. Затем мы обсудим электростатическую теорию, особенно обращая внимание иа теорию кристаллического поля. Эта последняя оказалась са юй удачной из трех для удовлетворительного сопоставления свой ств комплексов, а также по числу вычислений и предсказаний, которые она позволяет сделать. Наконец, мы кратко обсудим ме год молекулярных орбиталей. Этот метод реже других применя.п-ся к комплексам металлов из-за сложности рассмотрения с err помощью многоэлектронных систем. [c.249]


    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]

    По методу валентных связей с учетом теории кристаллического поля предскажите и изобразите геометрическое строение следующих частиц  [c.280]

    В гл. 4. Вы расширите свои познания о ионной и ковалентной связях, познакомитесь с явлением поляризации ионов и электроотрицательностью. Вам станет понятно, какими достоинствами и недостатками отличаются представления об ионном и ковалентном характере связи, в какой мере эти недостатки удается устранить, применяя теорию кристаллического поля или метод валентных схем. После изучения материала гл. 4 Бы поймете стремление к созданию единой модели химического взаимодействия, учитывающей как ионный, так и ковалентный вклад в образование связи. Такую модель предлагает теория молекулярных орбиталей. [c.169]

    Теория кристаллического поля не нова. Лэнгмюр в 1919 г. предположил наличие в комплексах ионной связи, а десятилетием позже Бете [24] разработал теорию с квантовомеханическим подходом. К комплексам переходных металлов эта теория впервые была применена Шлаппом и Пенни [25] и Ван-Флеком 26], которые использовали ее для вычисления магнитной восприимчивости. В 1935 г. Ван-Флек [27] обобщил и сравнил метод валентных связей, теорию кристаллического поля и метод молекулярных орбиталей. Однако в последующие годы вплоть до начала пятидесятых годов теорию кристаллического поля использовали только некоторые физики, в основном Ван-Флек с учениками для изучения главным образом тонких деталей магнетохимии и спектров поглощения. Возобновлением интереса к теории кристаллического [c.409]

    Теория кристаллического поля не нова. Лэнгмюр в 1919 г. предположил наличие в комплексах ионной связи, а десятилетием позже Бете разработал теорию с квантовомеханическим подходом. К комплексам переходных металлов эта теория впервые была применена Шлаппом и Пенни и Ван-Флеком , которые использовали ее для вычисления магнитных восприимчивостей. В 1935 г. Ван-Флек 1 обобщил и сравнил метод валентных связей, теорию кристаллического поля и метод молекулярных орбиталей. Однако в последующие двадцать лет теорией кристаллического поля пользовалось ограниченное число физиков, главным образом для изучения тонких деталей магнетохимии и спектров поглощения. Возобновлением интереса к теории кристаллического поля мы, вероятно, обязаны сделанной в 1951 г. работе химиков Илзе и Хартмана , которые применили ее для объяснения слабой полосы поглощения в видимой части спектра иона гексааквотитана (III) Вслед за ними Оргел , вероятно в большей мере, чем любой другой химик, развил теорию кристаллического поля и указал на ее важное значение для изучения комплексов. В последнее десятилетие большой вклад в эту теорию и ее применение в химии комплексных соединений сделали Йоргенсен, Бальхаузен, Бьеррум, Гриффитс, Ньюхольм, Оуен, Лир и многие другие. [c.257]

    Большие изменения произошли в изложении квантовой химии и теории химической связи в переводной и отечественной литературе и в преподавании теории строения вещества. Поэтому нам представлялось бесцельным повторно знакомить студентов III курса с качественными представлениями теории валентных связей и электронным строением молекул (форма электронных орбиталей, гибридизация, направленные валентности и др.), изучаемыми ими на I курсе. В то же время в ряде переводных и отечественных учебных пособий появилось вполне доступное изложение приближенных методов расчета молекул, основанных на методе молекулярных орбиталей метод молекулярных орбиталей в приближении Хюккеля (МОХ), теория кристаллического поля, теория поля лигандов и др. В связи с этим изложены количественные квантовохимические расчеты на основе строгого решения уравнения Шрёдингера для атома водорода (введение трех квантовых чисел п, I и [c.3]

    Для объяснения образования и свойств комплексных соединений в настоящее время применяются метод валентных связей (МВС), теория кристаллического поля (ТКП) и метод момкулярных орбиталей (ММО). [c.115]

    В табл. 19 приведены для различных комплексов определенные из спектров поглощения величины Д, вычисленные значения Р и данные о спиновом состоянии иона, полученные из магнитных измерений. Как видно, приведенные в табл. 19 сведения находятся в соответствии о вышеизложенным. Таким образом, теория кристаллического поля ус> танавливает количественную взаимосвязь между магнитными и спектральными характеристиками комплексов, что не удается сделать с помош,ью метода валентных связей. [c.224]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Au, ,, + Na+ + NHi + S03S + H,0 14.78. По методу валентных связей с учетом теории кристаллического поля определите тип гибридизации орбиталей центрального атома и предскажите геометрическую форму для следующих комплексов  [c.271]

    При взаимодействии газообразных фторида платины (IV) и дикислорода образуется твердый гексафтороплати-нат(У) диоксигенила. Магнетохимические измерения показывают, что на одну формульную единицу этого продукта приходится два неспаренных электрона. Рассмотрите электронное строение катиона диоксигенила О2+ (по методу молекулярных орбиталей) и гексафтороплатинат(У)-иона (по методу валентных связей с учетом теории кристаллического поля) объясните парамагнетизм продукта. [c.149]

    Взаимодействие между комплексообразователем и лигандами, природу связи, между ними объясняют с помсццью различных методов метода валентных связей (см. гл. Ill, 2), метода молекулярных орбиталей (см. гл. III, 6) и, наконец, с помощью электростатической теории, рассматривающей взаимодействие химических частиц как взаимодействие жестких шаров, обладающих определенным электрическим зарядом. Электростатическая теория развилась в теорию кристаллического поля, которая, в свою очередь, в сочетании с методом молекулярных орбиталей дала наиболее полную теорию связи в комплексах — теорию поля лигандов. [c.121]

    Вышепроведенное краткое рассмотрение природы координационной связи является упрощенным и лишь в качественной форме отражает реальную картину. Наиболее распространенными являются три подхода к пониманию природы химической связи в координационных соединениях металлов теория кристаллического поля, метод валентных связей и теория молекулярных орбиталей. [c.189]

    В настоящее время для 0б1зяснения образования, строения и свойств комплексных соединений применяют три теории метод валентных связей (МВС), теорию кристаллического поля (ТКП) и метод молекулярных орбиталей (ММО). [c.200]


Смотреть страницы где упоминается термин Метод валентных связей . 6. Теория кристаллического поля: [c.257]    [c.522]    [c.257]    [c.248]    [c.177]    [c.60]    [c.125]    [c.141]   
Смотреть главы в:

Строение вещества -> Метод валентных связей . 6. Теория кристаллического поля




ПОИСК





Смотрите так же термины и статьи:

Валентность теория

Валентных связей метод Метод

Валентных связей метод Метод валентных связей

Кристаллического поля теори

Метод валентных

Метод валентных связей МВС

Метод теории

Поляна теория

Связь валентная

Связь метод

Связь теория

Теория валентных связей

Теория кристаллического

Теория кристаллического поля



© 2025 chem21.info Реклама на сайте