Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ХИМИЯ МЕТАЛЛОВ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

    Синтез и исследование довольно устойчивых координационных соединений щелочных металлов с макроциклическими лигандами позволили создать координационную химию щелочных металлов Получены, выделены и изучены сотни координационных соединений лития, натрия, калия, рубидия и цезия Большой интерес с точки зрения неорганической химии представляют растворы щелочных метал- [c.20]


    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Комплексные (координационные соединения образуют как металлы, так и неметаллы. В аналитической химии чаще всего используют комплексные соединения металлов (координационные соединения металлов), поэтому в данной главе будем в основном рассматривать именно эти соединения. [c.180]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]


    Химия металлов координационные соединения 73 [c.373]

    Химия металлов координационные соединении [c.397]

    Химия платиновых металлов — это химия комплексных, координационных соединений. В этой области еще в молодые годы пытливый исследователь И. И. Черняев установил закономерность, открывшую новую страницу в изучении координационных соединений — закономерность трансвлияния или, как ее называют за рубежом,— эффект трансвлияния. При проведении направленного синтеза координационных соединений и объяснения их реакций этим эффектом широко пользуются исследователи как в Советском Союзе, так и за рубежом. [c.46]

    Ионы металлов, содержащие незаполненную -оболочку (а также /-оболочку), являются переходными—способными иметь различную валентность и образовывать комплексные, координационные соединения. Изучение таких соединений является главной областью современной неорганической химии. Соответственно важный раздел бионеорганической химии занимается ферментами, содержащими атомы переходных металлов в качестве кофакторов или в составе простетических групп (гемсодержащие белки). [c.216]

    Химия металло з координационные соединения 385 [c.385]

    В настоящее время ЭПР — один из важнейших инструментальных методов неорганической и координационной химии. Он позволяет получить сведения о составе комплексных соединений в растворе, о термодинамике и кинетике реакций, о способе координации лиганда к центральному иону, о строении координационных соединений и характере связи металл — лиганд, о взаимодействии ионов в кристаллической решетке неорганических соединений. [c.203]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]

    Возможны два подхода к предвидению состава и строения продуктов взаимодействия катиона металла с лигандами. Первый из них — это непосредственный расчет относительной устойчивости всех мыслимых конфигураций для конкретного случая, например методами квантовой механики. Второй — это использование предшествующего опыта, сформулированного в виде описания типичных координационных чисел катиона, типичных способов координации лигандов, полуэмпирических правил, связывающих термодинамические характеристики связей и стереохимические требования катиона и лиганда с их структурой и т. д. Оба подхода имеют свои достоинства и недостатки. Эффективность обоих подходов мала в тех (нередких в химии координационных соединений) случаях, когда энергетическая выгодность различных продуктов реакции близка. [c.19]

    Такой подход к явлениям адсорбции и катализа позволяет объяснить 1) сходство в каталитическом действии одних и тех же элементов в виде простых твердых тел (металлы), в виде их твердых соединений (окислы, сульфиды и т. д.) и в виде сольватиро-ванных ионов в растворе 2) роль хемосорбции в катализе 3) особое место переходных элементов в катализе без использования спорной модели -зоны. Развитые представления позволяют использовать достижения теории гомогенного катализа и химии координационных соединений в гетерогенном катализе и сближают взгляды на механизм различных типов катализа. [c.170]

    Успехи химии координационных соединений открывают широкие перспективы для создания новых методов лечения и диагностики различного типа заболеваний. Важное место в разработке лекарственных и диагностических средств на основе хелатов занимают комплексоны [931]. Эффективность терапевтических препаратов на их основе предопределяется ролью, которую играют в организме металлы жизни (Na, К, Mg, Са, Мп, Fe, Со, Си, Zn, Мо) [932, 933]. [c.492]

    Подобно тому как развитие химии было задержано флогистонной теорией, а развитие органической химии — представлениями о жизненной силе , прогрессу в координационной химии сильно мешали попытки приспособить ее к несовершенным валентным теориям, оказавшимся полезными в развитии органической химии, хотя они не различали понятий валентности и координационного числа. Только благодаря одаренности Альфреда Вернера координационная химия освободилась от своих цепей и был проложен путь для ее современного развития. В 1893 г. Вернер показал, что фактором, определяющим строение координационных соединений, является не валентность металла или другого центрального атома, а число групп любого характера, которые могут быть присоединены непосредственно к центральному атому, т. е. его координационное число. Любые группы сверх этих должны находиться вне сферы центрального атома и должны существовать в виде ионов, удерживаемых только электростатическими силами. Но работа Вернера не произвела на химиков сильного впечатления до тех пор, пока он в 1911 г. не разделил некоторые координационные соединения на оптические изомеры . Таким путем он показал, как это было принято в классической химии, что координационные соединения действительно имеют форму, которую им ир1шисывает его теория. [c.8]


    Из химии низкомолекулярных координационных соединений известно, что геометрия и длина связей в комплексах изменяются незначительно и определяются в основном электронной конфигурацией металла-комп-лексообразователя [1, 24—26]. Нет оснований предполагать, что эта закопохмерность нарушается при комплексообразовании в фазе полимера, лигандные группы которого располагаются статистически и лишь часть из них расположена именно в той конформации, которая диктуется электронной конфигурацией ионов метал-ла-комнлексообразователя. Поэтому при диффузии ионов металла в гранулу ионита прежде всего координируются те лигандные группы полимера, электронные орбитали которых перекрываются с вакантными электронными орбиталями ионов металла. Выделяющаяся при этом энергия координационной связи Ь- М частично расходуется на изменение конформационного набора [c.246]

    Химическое отделение Заведующий. R. О. С. Norman Направление научных исследований теоретические исследования в области строения молекул спектры комбинационного рассеяния и электронного парамагнитного резонанса колебательные спектры неорганических соединений адсорбция химия твердого тела кинетика и механизм реакций в газовой фазе и в растворе реакции металлорганических соединений и ионов переходных металлов координационные соединения химия гетероциклических соединений химия белка. [c.274]

    Особое внимание уделено координационной химии акрилонитрила. Это соединение имеет важное промышленное значение, и большинство его реакций на начальных стадиях характеризуется координационными взаимодействиями с кислотами Льюиса. Наличие в структуре акрилонитрила нитрильной группы и двойной связи, проявляющих свойства жесткого и мягкого основания Льюиса соответственно, обуславливает возможность его эффективной координации с Широким диапазоно [ кислот Лыоиса. Поэтому наш интерес к комплексам ак-р 1лонитрила с oля цI переходных металлов вполне понятен. [c.148]

    Как видно из ее данных, содержание ванадилпорфиринов в образцах нефти заметно снижается в результате их взаимодействия с комплексообразующими реагентами, поскольку, как известно из химии координационных соединений, металлопорфирины способны вступать во взаимодействие с комплексообразователями [llOj. Эта реакция носит название реакция экстракоординации и заключается в дополнительном присоединении молекулой металла дополнительных лигандов [111]. К числу наиболее активных экстралигандов относятся азотсодержащие комплексообразующие [c.141]

    В химии координационных соединений атом металла называют центральным атомом, или центром координации, а связанные с ним органические молекулы или радикалы, а также неорганические ионы — лигандами (адендами). [c.350]

    Авторы настоящего пособия стремились избежать характерной для большинства аналогичных пособий концентрации внимания на соединениях -металлов. В книгу введен раздел, посвященный физическим методам исследования координационных соединений, не рассмотренным в ранее изданных учебниках. Необходимость такого раздела обусловлена уникальными возможностями, которые открывают эти методы при исследовании строения и свойств комплексов, а также равновесий комплексообразования в сложных многокомпонентных системах. В книге отражены итоги развития науки в области координационной химии за последние десятилетия рассмотрена химия макроциклических и металлорганических соединений, новые методы синтеза комплексов. Более полно, чем в предыдущих изданиях, охвачены имеющиеся подходы к интерпретации материала в химии координационных соединений включен параграф о методе молекулярной механики, приведено описание энергетики частиц с помощью термов, которое необходимо для понимания спектральных методов исследования. Обсуждены особенности комплексообразования в ра личных агрегатных состояниях. Разделы, в которых рассматриваются основные типы комплексных соединений и методы синтеза, иллюстрированы большим количеством примеров. [c.3]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    При помощи аналогичных пульверизаторам газодинамических устройств из расплавленных металлов получают частицы с числом атомов 30—700. Их также называют (безлигандными) кластерами, хотя взаимосвязь этих частиц с химией координационных соединений практически отсутствует. [c.142]

    Цинк и кадмий в отличие от щелочно-земельных металлов образуют двойные соли типа шё4И1тш. Это обстоятельство уже доказывает большую комплексообразовательную способность элементов подгруппы цинка по сравнению с щелочно-земельными металлами. Цинк вследствие амфотерности образует наиболее устойчивый гид-роксокомплекс [2п(ОН)4] (р -15,5). Вторичная периодичность имеет место и в химии комплексных соединений. Это видно, например, из сравнения р/С для аммиакатов [Э(NHз)4]2+ [9,46 7,12 19,28 соответственно для 2п(-Ь2), Сс1(-Ь2), Hg( -2)]. Такая же картина наименьшей устойчивости координационных соединений кадмия наблюдается и для комплексов с тиомочевиной. Не надо думать, что такое положение фиксируется только для комплексных катионов. Так, рК для ацидокомплексов стиосульфат-анионом [Э (8203)2] от цинка к ртути принимают значения 8,2, 6,4 и 24,4. Кроме того, Сс] - - чаще других показывает к. ч. 6, например [С(1 (NH)я)J2+ [Сёи , [С<1(С 5), и др. [c.136]

    Координационные соединения с участием молекулярного азота. Известная своей стабильностью молекула N2 является изоэлектронным аналогом молекулы СО. Однако она отличается с гень высоким ПИ (плохой донор электронов) и нулевым СЭ (плохой акцептор). Этому соответствует очень низкая ВЗМО и весьма высокая НСМО (см. 31). Расстояние ВЗМО — НСМО в N2 очень велико ( 9 эВ). В связи с этим долгое время не предполагало( ь, что молекула N2 может образовывать соединения, подобные кapбoн шaм. Открытие координационных соединений тяжелых переходных металлов типа [Ки(МНз)з(К2)] [Вр4]2, цис-[05(КНз)4(М2)2]С12 и других, в которых молекула N2 играет роль лиганда, составило новую главу в химии азота. Затем последовали н соединения легких переходных металлов [СоН(К2) (РКз)д] и т. п. Важность этих соединений в том, что через них проходит путь к новым методам фиксации атмосферного азота (А. Е. Шилов с сотр., М. Е. Воль-пин с сотр.). Химическая связь в этих соединениях имеет общие черты со связью в карбонилах метатглов. И здесь электроны несвязывающих -орбиталей металла ( 2 ) переходят частично на тс -разрыхляющие орбитали N2, а электроны ст-ВЗМО молекулы N3 переходят частично на связывающие орбитали комплекса  [c.251]

    Наибольшую пользу в этом аспекте приносят результаты развития химии координационных соединений, открывшие громадное разнообразие типов металлокомплексов и их реакций, а также теоретической химии, заострившей внимание химиков на той роли, какую играет электронная структура центрального атома металла и лигандов металлокомплекса в его способности активировать вступаю-и ие в реакцию молекулы. Благодаря работам Дж. Гальперна, Дж. Колмана, Р. Уго, Р. Хека за рубежом и М. Е. Вольпина, А. Е. Шилова, И. И. Моисеева, К. Б. Яцимирского в нашей стране, проведенным за последние 15—20 лет, понимание общих закономерностей активации большинства простых молекул, таких, как Н2, СО, О2, N2, С2Н4, СН4, СО2, продвинулось достаточно далеко. [c.251]

    В органической химии отказались от понятия электровалентности, причем одной из причин отказа были затруднения, возникающие при расчете формальной электровалентиости атомов углерода, участвующих в связях —С—С—С—. Наличие связей металл— металл и металл—углерод в комплексных соединениях также сильно затрудняет расчет электровалентности иона металла. Однако в большинстве координационных соединений электровалентность рассчитывается надежно. [c.6]

    Фишер Э., Вернер Г. я-Комплексы металлов. Мир , 1968. Химия координационных соединений под ред. Дж. Бейлара и Д. Буша. ИЛ, 1960. [c.200]

    Первые металлокомплексы макроциклических полиэфиров выделены и изучены Педерсеном В его работах (29, 546] приведен синтез координационных соединений ненасыщенных краун-эфиров с солями щелочных и щелочноземельных металлов, свинца, а также некоторых переходных элементов — Ag, Сс1, Hg В результате интенсивного развития препаративной химии макроциклических полиэфиров в литературе появилось много сообщений о получении кристаллических комплексов этих лигандов с катионами металлов 1а и Па групп, непереходных р-элементов, -металлов, а также с ионами /-элементов — 1антаноидов и актиноидов [c.182]

    Металлоорганические соединения — это или соединения со связью С-М (с локализованной о-связью между единичным атомом углерода и металлом М), или же со связями С - -М- -С (с химическими связями металла с целой группой атомов углерода С , где и может изменяться от 2 до 6 и более атомов). Соединения с функциональной группой С-М составляют основной тип металлоорганических соединений, включающий больщинство металлов периодической системы. Переходные /-металлы образуют такие соединения с больщим трудом или вовсе их не образуют (платиновые металлы). Для них характерны металлорганические соединения с делокализованной ст,я-связью С ---М. Такая связь во многом напоминает донорно-акцепторные связи комплексных соединений, поэтому эти соединения часто относят к комплексным (координационным) соединениям и рассматривают в курсах химии комплексных соединений. [c.573]

    Весьма актуальны проблемы электронно-конформационных взаимодействий (ЭКВ), решаемые методами квантовой механики [56, 57]. ЭКВ лежат в основе действия ферментов (см. гл. 6). В связи с этим особый интерес представляют ферменты, содержащие в качестве кофакторов атомы переходных металлов. Их теоретическое исследование должно основываться на квантовой химии координационных соединений. Речь идет о бионеорганн-ческой химии. [c.115]

    В этих соединениях вокруг центрального катиона (атома) регулярно расположены молекулы или ионы, и с этой точки зрения они напоминают комплексные соли. Однако название соль к ним неприменимо и лучше называть их просто комплексами или координационными соединениями. Лиганды, которые легко координируются атомами металла с образованием низковалентных комплексов, приведены в нижней части табл. 4.31. Координируются также амины, ионы С1 , Вг , 1 . Исключение составляет вода, р- и ионы кислородсодержащих кислот. Координационную связь в низковалентных комплексах нельзя объяснить путем кислотно-основных взаимодействий по Льюису (разд. В.З настоящей главы). Комплексы, содержащие такие связи, называют невернеровскими. Напротив, обычные комплексы, в которых взаимодействие осуществляется по Льюису (включая и незаряженные комплексные соли), называют вернеровскими. Такое деление удобно, и его часто используют на практике. Применяемые в синтетической химии катализаторы на основе комплексов переходных металлов в большинстве относятся к невернеровскому типу. [c.224]


Библиография для ХИМИЯ МЕТАЛЛОВ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ: [c.150]   
Смотреть страницы где упоминается термин ХИМИЯ МЕТАЛЛОВ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ: [c.370]    [c.401]    [c.526]    [c.415]    [c.68]    [c.448]    [c.448]    [c.324]    [c.161]    [c.210]   
Смотреть главы в:

Химия в центре наук. Ч.2 -> ХИМИЯ МЕТАЛЛОВ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ




ПОИСК





Смотрите так же термины и статьи:

Координационные соединени

Металлы соединения

Соединения координационные



© 2024 chem21.info Реклама на сайте