Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Многоатомные молекулы в методе молекулярных орбиталей

    Первым методом молекулярных орбиталей, который можно было использовать для расчета свойств многоатомных молекул, явился метод МО Хюккеля. Уравнения (7.89), (7.90) были построены на ассоциациях с формализмом теории Слэтера и Блоха для описания поведения электронов в металле. Однако основной идеей метода, не вытекающей из какой-либо теории, является введение заимствованного из строения двухатомных молекул представления [c.255]


    При описании химической связи методом молекулярных орбиталей исходят из того, что все электроны связанных атомов участвуют в образовании химической связи и в соединении находятся на так называемых молекулярных орбиталях. В многоатомных молекулах одна молекулярная орбиталь, содержащая обычно два электрона, может охватывать все ядра молекулы. Электронная пара, находящаяся на такой молекулярной орбитали, называется делокализованной в отличие от локализованных пар, связывающих только два ядра. [c.100]

    Оглавление показывает, что в названиях отдельных глав и их последовательности, т. е. в выборе содержания и построения книги, авторы довольно близко следовали книге Коулсона. В начальных главах даны элементы квантовой механики, теории валентности и теории атомных спектров. Далее излагаются основные методы теории электронных оболочек молекул — метод молекулярных орбиталей и метод валентных связей — в применении к двухатомным и затем к многоатомным молекулам. В последующих главах рассматриваются теория поля лигандов, д-электронное приближение в органической химии и некоторые специфические типы химических связей. [c.5]

    Глава IX. МНОГОАТОМНЫЕ МОЛЕКУЛЫ В МЕТОДЕ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ [c.190]

    Метод молекулярных орбиталей (МО) предполагает существование электронных орбиталей в молекулах так же, как и в атомах принципы заселения электронами МО те же, что и для АО. В молекулах (и других многоатомных частицах) орбитали возникают при смешивании (в простейшем приближении — при линейной комбинации) орбиталей атомов, причем число образовавшихся МО равно числу смешиваемых АО. Электроны, заселяющие МО, считаются принадлежащими всем связанным атомам в результате образуются многоцентровые многоэлектронные химические связи. [c.166]

    Метод валентных связей. Точное описание распределения электронов возможно лишь для небольшого числа молекул. Обычно используют приближенные методы расчета двух- и многоатомных систем с ковалентной связью метод валентных связей (ВС) и метод молекулярных орбиталей (МО). [c.40]

    Метод валентных связей, наглядно иллюстрируя образование и структ) у различных многоатомных частиц, не всегда объясняет свойства вещества, в частности магнитные. Некоторые специфические связи между атомами (такие, как в молекуле бензоЛа или в металлических кристаллах) по этому методу представляются слишком упрощенно. Эти вопросы нашли объяснение с позиций метода молекулярных орбиталей, который позволяет не только описывать, но и количественно рассчитывать характеристики связей. [c.66]


    Основу метода молекулярных орбиталей составляет понятие о нелокализованных химических связях, под которым подразумевается, что в многоатомных системах (молекулах, кристаллах) валентные электроны одновременно принадлежат всем связываемым атомам. [c.66]

    Начало одному из методов было положено работой В. Гейтлера и Ф. Лондона (1927). Они впервые объяснили природу сил в молекуле водорода. В 30-х годах эти идеи были развиты Слейтером и Полингом для многоатомных молекул. Их представления получили название — спиновая теория валентности, или метод электронных пар. Параллельно с указанным плодотворно развивается другой подход к объяснению ковалентной связи, получивший название метода молекулярных орбиталей (Гунд, Милликен, Хюккель, Леннард-Джонс, Коулсон). [c.87]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Любую молекулярную орбиталь (МО) можно трактовать, подобно любой атомной орбитали, как объем пространства в молекуле, где пребывание электронов можно обнаружить с вероятностью 90 % и где может сосредотачиваться 90 % электронной плотности одного или двух электронов в зависимости от занятости данной МО. На рис, 25, представляющим энергетическую диаграмму образования связи в молекуле водорода по методу молекулярных орбиталей, такой МО, занятой двумя электронами является, например, нижняя- по энергии орбиталь (молекулярные орбитали в отличие от атомных орбиталей представляют круговыми квантовыми ячейками). Здесь рассматриваются только двухцентровые молекулярные орбитали, охватывающие два атомных ядра от них легко перейти к общему представлению о много-центровых молекулярных орбиталях, существующих в многоатомных частицах, например в молекуле бензола (см. ниже рис. 43). [c.115]

    Понятие о методе молекулярных орбиталей. Более универсальным квантово-химическим методом описания химической связи является метод молекулярных орбиталей (ММО), развитый в трудах Леннарда—Джонса, Гунда и особенно Малликена. В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталялт (МО), подобно тому, как электроны в атомах характеризуются атомными орбиталями (АО). При этом и. АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентровые, а МО — многоцентровые орбитали. Итак, ММО — квантово-химический метод описания химической связи, рассматривающий молекулу и любую многоатомную систему как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.88]

    Изложение собственно теории валентности начинается с двухатомных молекул, рассмотрение которых производится при помощи двух методов — метода молекулярных орбиталей (МО) и метода валентных связей (ВС), причем автор в специальной главе подробно сопоставляет эти методы. Затем рассматриваются многоатомные молекулы с насыщенными и с сопряженными связями. Отдельная глава посвящена строению комплексных соединений, рассмотренных с точек зрения теорий кристаллического поля и поля лигандов. Две главы посвящены теории химической связи в неметаллических и в металлических твердых телах, а последняя глава — вопросам водородной связи, сверхсопряжения, строения молекул с электронным дефицитом и некоторым другим. [c.5]

    Р. С. Малликен распространил метод молекулярных орбиталей на многоатомные молекулы. [c.677]

    Слейтер и Полинг в 30-х годах распространили изложенные идеи на многоатомные молекулы и этот метод получил название метода валентных связей (ВС). Наряду с ним успешно применяется метод молекулярных орбиталей (МО), развитый главным образом работами Милликена и Гунда. [c.78]

    Б первые годы развития квантовой химии для расчета электронных свойств многоатомных молекул использовались метод валентных связей и метод молекулярных орбиталей (МО). Впервые [c.1834]

    Основу метода молекулярных орбиталей составляет представление о нелокализованных химических связях. При этом подразумевается, что в многоатомных системах (больших молекулах, кристаллах) валентные электроны одновременно принадлежат нескольким атомам. В результате замены атомной орбитали на молекулярную происходит делокализация электрона. [c.86]


    На базе теории А. М. Бутлерова о химическом строении развилась теория химических связей. Метод валентной связи дает возможность описать особенности химической связи, структуру и свойства большинства молекул, а также валентность элементов в соединениях. Более широкие возможности для объяснения химических связей и построения электронных структур предоставляет метод молекулярных орбиталей. Он достаточно сложен, особенно для многоатомных молекул, тем не менее широко используется в количественных расчетах с применением компьютеров. [c.113]

    Химическую связь в элементах можно понять с помощью метода молекулярных орбиталей, согласно которому линейные комбинации атомных орбиталей представляют приближенные решения волнового уравнения Шредингера для систем, содержащих более одного атома. В двухатомных молекулах молекулярная орбиталь описывается только двумя членами, в многоатомных молекулах возможно образование локализованных или полностью нелокализованных молекулярных орбиталей. [c.80]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Работы посвящены преимущественно квантовой химии. Один из создателей (вместе с Дж. Э. Леннард-Джонсом и Ф. Хундом 1928—1932) одного из методов квантовой химии — метода молекулярных орбиталей. Ввел (1932) в науку термин молекулярная орбиталь . Распространил (1932—1935) этот метод на случай многоатомных молекул. Использовал теорию симметрии для классификации молекулярных орбиталей. Изучал (вторая половина 1930-х — начало 1940-х) абсолютные интенсивности молекулярных спектров (особенно спектров внутри- и межмолекулярного переноса заряда), сверхсопряжение, применил ЭВМ для расчета л,-электронных систем. При его участии создано несколько поколений машинных программ, с помощью которых были проведены неэмпирические расчеты различных соед. [c.282]

    В случае многоатомных молекул использование даже приближенных методов (методы молекулярных орбиталей и валентных схем) затруднительно для количественных расчетов. Однако эти теории дают весьма полезную качественную картину молекулярных орбиталей. [c.521]

    Метод МО представляет собой естественное распространение теории атомных орбиталей (АО) на поведение электронов в молекуле. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра атомов в молекуле, и МО занимает весь объем молекулы. Таким образом, метод МО рассматривает молекулу и другие устойчивые многоатомные системы как многоатомный атом , в котором электроны располагаются на орбиталях, называемых молекулярными. Так как на электрон молекулярной орбитали воздействует поле многих ядер, то образование МО из АО приводит к уменьшению энергии системы. Представим, что атом А, имеющий свободный или спаренный электрон, приближается к атому В. Из двух изолированных атомов образуется система, состоящая из двух ядер а и й, в поле которых находятся электроны этих атомов. Если молекула состоит из п атомов с суммарным числом электронов М, то состояние молекулы можно представить системой из п силовых центров, в поле которых находится N электронов. Такое представление о молекуле как о взаимодействующем коллективе всех ядер и электронов лежит в основе теории метода МО. Основные положения  [c.48]

    Метод ВС можно использовать и для расчета многоатомных молекул, но такие расчеты не получили широкого распространения. В последнее время развивается новый подход — обобщенный метод валентных связей, который синтезирует идеи двух методов ВС и молекулярных орбиталей. [c.97]

    Все расчеты многоатомных молекул основаны на приближенных решениях уравнення Шрёдингера (4.3). Практика предъявляет два главных требования к уровню приближения и выбору расчетной схемы. Это, во-первых, достаточное соответствие результатов расчета результатам эксперимента и, во-вторых, достаточная экономичность расчетов, т. е. разумные затраты времени при выполнении их на быстродействующих ЭВМ. Из двух основных теорий химической связи — метода валентных связей и метода молекулярных орбиталей — последний имеет значительные преимущества при реализации на ЭВМ. Поэтому все основные расчетные методы современной квантовой химии используют приближение МО в форме схемы ЛКАО МО Хартрн—Фока—Рутаана (см. разд. 4.3.3). В рамках этой схемы возможны как дополнительные усовершенствования расчетной модели (учет эффектов электронной кор- [c.203]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    На этом заканчивается далеко не полное изложение применений метода МО ЛКАО к многоатомным молекулам. В последнее время Джонсоном и другими развивается еще одна разновидность метода молекулярных орбиталей, в которой обходятся без приближения ЛКАО. Это ССП—Ха метод рассеянных волн, в котором используется подход к расчету строения атомов и зонной структуры кристаллов, предложенный Слейтером, Этот метод имеет преимущество в выигрыше машинного времени при расчетах по сравнению с методом МО ЛКАО, но является пока удовлетворительным лишь при описании высокосимметричнык молекул [к-22], [к-46 . [c.253]

    Метод молекулярных орбиталей позволяет не только описывать, но и количественно рассчитывать характеристики связей. Основу метода молекулярных орбиталей составляет понятие о нелокализованных химических связях, под которым подразз евается, что в многоатомных системах (молекулах, кристаллах) валентные электроны одновременно принадлежат всем связываемым атомам. [c.82]

    Таким образом, и вещества с дефицитом валентных электронов, по существу, выходят за границы применимости МВС. Факты, не объяснимые существующими теориями, — писал А. М. Бутлеров, — наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем . Другой метод квантовой химии — метод молекулярных орбиталей (ММО) — объясняет химическую связь в ковалентных веществах, а также в соединениях с избытком и с дефицитом валентных электронов, 36. Понятие о методе молекулярных орбиталей. Бо. 1ее универсальным квантовохнми-ческим методом описания химической связи служит метод молекулярных орбиталей (ММО), развитый в трудах Леннарда-Джонса, Г унда и особенно Малликена В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталями (МО), подобно тому как электроны в атомах характеризуются атомными орбиталями (АО). При этом и АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентро-Бые, а МО—многоцентровые орбитали. Итак, ММО — квантовохимический метод описания химической связи, рассматривающий молекулу и другие многоатомные системы, как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.120]

    Научные работы посвящены преимущественно квантовой химии. Один из создателей (наравне с Дж. Э. Леннард-Джонсом и Ф. Хундом 1928—1932) основного метода квантовой химии — метода молекулярных орбиталей. Распространил (1932—1935) этот метод на случай многоатомных молекул. Использовал теорию симметрии для классификащш молекулярных орбиталей. Изучал (вторая половина 1930-х — начало 1940-х) абсолютные интенсивности молекулярных спектров (особенно спектров внутри- и межмолекулярного иереносз [c.320]

    НЫХ его неполна, В результате чего он и имеет множество решений. Значительно более полпые сведения можно получить, изучая положение и интенсивности нескольких полос пог.тощения в спектрах. К решению такой задачи эмпирическая теория цветности уже не применима. Однако расчет и интерпретацию полос можно произвести на основе методов квантовой химии [3], среди которых все в бо.лее широких масштабах используются различные модификации метода МО ЛКАО (метод молекулярных орбиталей, взятых в виде линейных комбинаций атомных орбиталей). Как известно, в достаточно хорошем приближении можно рассматривать раздельно задачу о движении о- и л-электронов. Это позволяет построить упрощенные электронные функции многоатомной молекулы, пользуясь тем, что переходы между уровнями энергии а- и л -электронов лежат в существенно разных областях спектра. Так как окрашенные реагенты и их комплексы поглощают в области, соответствующей я — л -переходам, для решения вопросов о связи строения и цветности соединений можно ограничиться л-электронным приближением. Это означает, что учитываются только эффекты, связанные с делокализацией. [c.37]

    Многоатомные молекулы. В системах из большего числа атомов имеют место многоцентровые МО. Например, в молекуле бензола 2р -электроны образуют нелокали-зованную тт-связь (см. рис. 29). Согласно методу молекулярных орбиталей, шесть р,-кО образуют три связывающие и три разрыхляющие тт -МО. Шесть -электронов шести атомов углерода занимают три связывающие молекулярные орбитали (рис. 53). [c.91]

    Молекула ВеНз- В случае многоатомных молекул согласно методу ЛКАО молекулярная орбиталь составляется из орбитали центрального атома (г1зц,а) и групповой орбитали ( ) ,р) периферических атомов (лигандов)  [c.58]

    Сравнение методов ВС и МО. Эти методы, на первый взгляд, совершенно различны, но более подробное сопоставление вскрывает много общих черт. В методе ВС предполагается, что атомы полностью сохраняют свою индивидуальность, и единственным изменением, происходящим при образовании молекулы, является обмен электронами между орбиталями соседних атомов. Метод МО, по существу, является распространением теории многоэлектронных атомов на молекулы. Если состояние атома описывается как совокупность атомных орбиталей, то аналогично можно рассматривать молекулу как совокупность молекулярных орбиталей, которые возникают из комбинации орбита-лей атомов, входящих в состав молекулы. Оба эти метбда скорее дополняют, чем противостоят друг другу. Аргументированный выбор между ними целиком зависит от тех задач, которые необходимо решить. В настоящее время в большинстве работ по теории химической связи применяется метод МО. Это объясняется тем, что в применении к многоатомным молекулам как сам метод МО, так и программирование расчетов на ЭВМ осуществляется проще, чем для метода ВС. С другой стороны, метод ВС дает более наглядное представление о химической связи и строении молекул. [c.198]


Смотреть страницы где упоминается термин Многоатомные молекулы в методе молекулярных орбиталей: [c.86]    [c.127]    [c.261]    [c.127]    [c.215]    [c.122]    [c.90]   
Смотреть главы в:

Молекулы и химическая связь -> Многоатомные молекулы в методе молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Метод Молекулы

Метод молекулярных орбиталеи

Метод молекулярных орбиталей ММО

Молекулы многоатомные

Молекулярная метод Метод молекулярных

Молекулярные орбитали орбитали

Орбитали метод

Орбитали молекул

Орбиталь молекулярная



© 2024 chem21.info Реклама на сайте