Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь. Метод молекулярных орбиталей

    Учение о химической связи является центральной проблемой современной химии. Чтобы описать химическую связь в веществе, необходимо выяснить, как распределяется электронная плотность. Для этого требуется решение уравнения Шредингера. Как видно, подход к исследованию строения атомов и молекул одиТ) и тот же. Решение уравнения Шредингера осуществлено только для молекулярного иона водорода Нг , состоящего из двух протонов и одного электрона. Поскольку точное решение уравнения Шредингера для более сложных молекул невозможно, применяют приближенные методы расчета волновой функции Ф . Главными являются метод валентных связей (ВС) и метод молекулярных орбиталей (МО). [c.229]


    На современном уровне рассмотрены основные понятия и законы химии строение вещества, химическая связь (метод молекулярных орбиталей, метод валентных связей, зонная теория кристаллов), важнейшие положения химической термодинамики и химической кинетики, методы исследования структуры веществ. [c.2]

    ХИМИЧЕСКАЯ СВЯЗЬ. МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ [c.234]

    Мы рассмотрели представления о химической связи с позиций метода молекулярных орбиталей и метода валентных связей (схем). Пользуясь этими теориями, объяснили некоторые конкретные примеры строения молекул, рассмотрели влияние строения молекул на их свойства. Эти приближенные теории помогают ориентироваться в большом многообразии экспериментальных данных. Однако, несмотря на большие успехи в развитии учения о химической связи, теорию, способную количественно предсказать свойства огромного разнообразия веществ, еще предстоит разработать. [c.74]

    На основе метода ВС трудно объяснить и то, что отрыв электронов от некоторых молекул приводит к упрочнению химической связи. Так, энергия разрыва связи в молекуле F2 составляет 155 кДж/моль, а в молекулярном ионе Fj — 320 кДж/моль аналогичные величины для молекул О2 и молекулярного иона 0 составляют соответственно 494 и 642 кДж/моль. Приведенные здесь и многие другие факты получают удовлетворительное объяснение на основе метода молекулярных орбиталей. [c.105]

    В ряде случаев метод валентных связей не в состоянии объяснить наличие парамагнетизма, например в молекуле О2. Объяснение этому факту дает другой метод описания химической связи — метод молекулярных орбиталей. [c.115]

    Метод молекулярных орбиталей. Для приближенного представления вида функции основного состояния системы электронов молекулы существуют два метода, основанные на теории валентных связей (ВС) или на теории молекулярных орбиталей (МО). Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а потому отражают разные представления об основном строении молекулы. В методе ВС принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Метод ВС был разработан раньше метода МО. Он дает более наглядное представление о строении молекулы и поэтому его чаще применяют для качественного решения некоторых вопросов. В частности, метод ВС достаточно просто трактует геометрию молекулы. [c.23]


    Недостатком ТКП является полное игнорирование ковалентного вклада в образование координационных соединений. Поэтому наиболее эффективным подходом к описанию свойств комплексных соединений является учитывающий одновременно ионный и ковалентный вклад в, образование связи метод молекулярных орбиталей (ММО). Согласно этой теории химическая связь в комплексных соединениях осуществляется электронами, находящимися не на АО, локализованных только около центрального атома и данной рассматриваемой группы, а комплексообразование происходит в результате образования новых молекулярных орбиталей (МО), каждая из которых простирается на все ядра системы. Форма и энергия этих новых МО, каждая из которых может содержать не более двух электронов в соответствии принципом Паули, зависит от характера взаимодействующих АО. [c.384]

    В данном учебнике описание электронного строения молекул и химической связи ведется на основе метода молекулярных орбиталей., [c.59]

    При описании химической связи методом молекулярных орбиталей исходят из того, что все электроны связанных атомов участвуют в образовании химической связи и в соединении находятся на так называемых молекулярных орбиталях. В многоатомных молекулах одна молекулярная орбиталь, содержащая обычно два электрона, может охватывать все ядра молекулы. Электронная пара, находящаяся на такой молекулярной орбитали, называется делокализованной в отличие от локализованных пар, связывающих только два ядра. [c.100]

    Ни одна модель химической связи не будет в равной мере успешна в объяснении свойств всех соединений переходных элементов, Даже наиболее гибкий в теории химической связи метод молекулярных орбиталей в применении к переходным элементам страдает тем, что на неэмпирическом уровне требует большого объема вычислений, а на полуэмпирическом уровне его очень трудно параметризовать. И только в последние годы расчеты на основе метода молекулярных орбиталей дали до некоторой степени удовлетворительное объяснение структуры и спектров соединений переходных металлов. В противоположность этому эмпирическая теория, известная как теория поля лигандов, оказалась очень успешной в интерпретации свойств соединений переходных металлов важного, хотя и ограниченного класса. [c.249]

    При изложении теории химической связи, строения и свойств молекул рассмотрены метод молекулярных орбиталей МО ЛКАО, широко применяемый сегодня в практике расчетов строения электронной структуры и реакционной способности молекул, и наиболее информативный экспериментальный метод исследования — молекулярная спектроскопия. [c.3]

    Теория кристаллического поля базируется на электростатической модели и не учитывает других видов взаимодействий между лигандом и металлом, а именно ковалентность химической связи. Метод молекулярных орбиталей (ММО) дает основу для понимания ковалентности связи в комплексных соединениях. [c.530]

    Электронное строение молекулы кислорода. Характер химической связи в молекуле кислорода О2, а соответственно и некоторые свойства молекулярного кислорода необъяснимы с позиций теории общих электронных пар, рассмотренной в 3.7. Однако они становятся понятны при использовании другого способа описания ковалентной связи — метода молекулярных орбиталей. Не вдаваясь в суть этого метода, укажем лишь некоторые его постулаты  [c.355]

    В предыдущем разделе говорилось о применении одноэлектронной модели в теории атомов. Современная теория химической связи — метод молекулярных орбиталей (МО) и зонная теория твердого тела — представляет собой применение той же модели к многоатомным системам. Такое применение обычно предполагает два дополнительных допущения. [c.21]

    Детальное рассмотрение методов ВС и МО с описанием математических моделей химических связей выходит за пределы настоящего курса. Ограничимся лишь кратким качественным описанием физических моделей химических связей и молекулярных орбиталей, представления о которых будут использоваться ниже для интерпретации строения и реакционной способности органических соединений. [c.26]

    Метод молекулярных орбиталей является более широким, чем метод валентных связей, и охватывает практически все виды химического взаимодействия. Метод молекулярных орбиталей стал применяться не сразу. Это было связано с тем, что метод валентных связей лучше отвечал привычным представлениям о молекуле как [c.91]

    При подходе к химической связи в рамках метода валентных связей (ВС) предполагается, что электроны на атомных орбиталях (часто гибридных) перекрываются с образованием связей. Метод молекулярных орбиталей рассматривает ядра всей молекулы как одно полицентрическое ядро и строит систему молекулярных орбиталей, характеризуемых наборами квантовых чисел, подобно тому, как строятся атомные орбитали в атомах. После построения системы МО добавляются электроны, причем соблюдаются условия, накладываемые принципом Паули. При добавлении электронов сперва занимаются орбитали с более низкими энергиями и учитывается правило Гунда. Часто вводят приближенное предположение о том, что молекулярные орбитали могут быть представлены в виде линейных комбинаций атомных орбиталей. Такое приближение обозначается буквами ЛКАО (линейные комбинации атомных орбиталей). Для того чтобы атомные орбитали могли взаимодействовать с образованием молекулярных орбиталей, они должны, во-первых, иметь близкие энергии, во-вторых, перекрываться в заметной степени и, в-третьих, иметь одинаковую симметрию относительно линии связи в молекуле. [c.69]


    При подготовке четвертого издания в него внесены дополнения и изменения. Глава Строение атома. Химическая связь дополнена разделом Метод молекулярных орбиталей . Внесены-некоторые изменения в расположение отдельных глав. Так, глава Радиоактивность. Ядер-ные превращения теперь следует за главой Строение атома. Химическая связь , что отвечает общепринятой последовательности в современных лекционных курсах. В новом издании более строго соблюдена Международная система единиц (СИ). [c.3]

    Из сказанного следует, что в методе ВС каждая МО формируется из двух АО, а химическая связь объясняется взаимодействием двух электронов с антипараллельными спинами. Это наглядно и удобно, так как такая пара электронов аналогична валентному штриху в структурных формулах химических соединений. Однако существуют соединения, обусловленные химической связью с одним или несколькими электронами, обобществленными разными атомами, свойства которых трудно описать с помощью метода ВС. По этой причине большее распространение в настоящее время получил метод молекулярных орбиталей (метод МО), разработанный Малликеном, Гундом, Хюккелем и др. [c.31]

    Представьте себе, что вы преподаватель химии и вам нужно провести семинар по одной из следующих тем 1. Теория валентных связей. 2. Метод молекулярных орбиталей. 3. Направление химического процесса. 4. Гидролиз. 5. Произведение растворимости. 6. Окислительно-восстановительные реакции. 7. Восстановительные потенциалы. 8. Теория сильных электролитов. [c.162]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Теория кристаллического поля является весьма грубым приближением к действительности, так как рассматривает лиганды бес-структурно, как источники точечных отрицательных зарядов. Для более точных расчетов следует применять метод молекулярных орбиталей (МО), который в применении к комплексным соединениям называется теорией поля лигандов. В этой теории учитывается строение молекулярных орбиталей как адсорбированных атомов и молекул, так и атомов катализатора. Таким образом, становится возможным оценивать адсорбционную и каталитическую активность вещества и реакционную способность адсорбированных молекул в связи с их химическим строением. [c.459]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Для описания химической связи наиболее широко используются два подхода метод молекулярных орбиталей (МО) и метод валентных связей (ВС). В развитии метода ВС особая заслуга принадлежит В. Гейтлеру и Ф. Лондону, Д. Слетеру и Л. Полингу, в развитии метода МО — Р. Малликену и Ф. Хунду. [c.44]

    Метод молекулярных орбиталей нашел широкое применение, так как дает самый общий подход ко всем типам химических соединений. В последнее время эта теория доминирует в теории химической связи и теоретической химии вообще. Ее математический аппарат наиболее удобен для проведения количественных расчетов с помощью ЭВМ. [c.61]

    Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Независимо от типов химической связи причина ее образования — одна. Химическая связь образуется, если электроны взаимодействующих атомов получают возможность двигаться одновременно вблизи положительных зарядов нескольких ядер. Задача заключается в том, чтобы достаточно правильно описать главные детали этого движения многих частиц и научиться рассчитывать в различных участках молекулы электронную плотность, обеспечивающую связывание атомов. Оказалось, что получить даже качественно правильные решения уравнения Шредингера удается не всегда. Поэтому в настоящее время применяются для объяснения свойств химической связи разнообразные приближенные теории, часто сильно отличающиеся друг от друга. Из методов квантовой химии наиболее известны два подхода к расчету молекулярных систем — метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО). [c.101]

    По содержанию и методике изложения материала настоящее пособие существенно отличается от традиционных курсов неорганической химии. Излагаются современные взгляды на строение вещества, теорию химической свяаи с позиций как метода валентных связей, так и метода молекулярных орбиталей и основные положения химической термодинамики. Фактический материал неорганической химии рассматривается с привлечением структурных и термодинамических представлений. [c.2]

    В настоящее время все большее значение приобретает рассмотрение химической связи с позиций метода молекулярных орбиталей. [c.83]

    Область применения метода молекулярных орбиталей очень широка. Этот метод дает самый общий подход ко всем химическим соединениям. Метод незаменим для описания систем с нелокализованными связями, для объяснения свойств разнообразных комплексов (см. стр. 122). В настоящее время теория молекулярных орбиталей является доминирующей в теории химической связи и в теоретической химии вообще. Ее математический аппарат наиболее удобен для проведения количественных расчетов на компьютерах. [c.102]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Как и следует из общих положений метода молекулярных орбиталей, а изучение природы химической связи в этих соединениях подтвердило такой вывод, прочность связи металла с органическим лигандом тем выше, чем сильнее перекрываются орбитали металла и лиганда, чем ближе энергии этих орбиталей, чем большее число связывающих и меньшее число разрыхляющих молекулярных орбиталей занято электронами. При детальном рассмотрении электронного строения отдельных комплексов показано, что при образовании тг-связи алкена с металлом происходит не только передача тг-электронов на вакантную орбиталь металла. Дополнительно осуществляется перенос электронов с других орбита-лей металла на разрыхляющие орбитали лиганда тг-симметрии. Это объясняет низкую полярность связи металл—лиганд в таких комплексных соединениях и повышает их кинетическую стабильность, [c.599]

    Метод молекулярных орбиталей. Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию 01]ределенного числа ковалентных связей, объясняет направленность 1 овалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС пе может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. [c.141]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Метод молекулярных орбиталей. Метод валентных связей дал удовлетворительное истолкование целому ряду фактов, таких, как нанравленность связей, способность атомов к образованию определенного числа связей, особенности структуры и свойств ряда молекул. Одиако этот метод не объяснил существования довольно прочного молекулярного иона водорода Н, , содержащего только один электрон, а также упрочения химической связи при отрыве электронов от некоторых молекул. Для этих фактов была предложена другая теория, получившая название метода м.ол кулярных орбиталей. [c.49]

    Большие изменения произошли в изложении квантовой химии и теории химической связи в переводной и отечественной литературе и в преподавании теории строения вещества. Поэтому нам представлялось бесцельным повторно знакомить студентов III курса с качественными представлениями теории валентных связей и электронным строением молекул (форма электронных орбиталей, гибридизация, направленные валентности и др.), изучаемыми ими на I курсе. В то же время в ряде переводных и отечественных учебных пособий появилось вполне доступное изложение приближенных методов расчета молекул, основанных на методе молекулярных орбиталей метод молекулярных орбиталей в приближении Хюккеля (МОХ), теория кристаллического поля, теория поля лигандов и др. В связи с этим изложены количественные квантовохимические расчеты на основе строгого решения уравнения Шрёдингера для атома водорода (введение трех квантовых чисел п, I и [c.3]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]


Смотреть страницы где упоминается термин Химическая связь. Метод молекулярных орбиталей: [c.127]    [c.314]    [c.49]   
Смотреть главы в:

Программированные задачи по общей химии -> Химическая связь. Метод молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Метод молекулярных орбиталеи

Метод молекулярных орбиталей ММО

Метод молекулярных орбиталей в описании химической связи. Основные понятия. Перспективы метода

Метод молекулярных орбиталей. Электронные конфигурации и свойства химической связи двухатомных молекул

Молекулярная метод Метод молекулярных

Молекулярные орбитали а- и я-связи

Молекулярные орбитали орбитали

Описание химической связи в методе молекулярных орбиталей (МО)

Орбитали и химическая связь

Орбитали метод

Орбиталь молекулярная

Связь метод

Связь химическая молекулярная

ХИМИЧЕСКАЯ СВЯЗЬ В УГЛЕВОДОРОДАХ Метод молекулярных орбиталей

Химическая связь

Химическая связь в методе

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте