Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод переходного состояния в химической кинетике

    Чтобы перейти к рассмотрению интересующего нас вопроса, необходимо вначале кратко напомнить известные методы решения задач химической кинетики — метод активных соударений и метод переходного состояния. Применение этих методов позволяет охарактеризовать взаимодействие двух или большего числа молекул с разных сторон. При пользовании методом активных соударений это взаимодействие рассматривается как мгновенный акт, совершающийся при столкновении активных молекул (обладающих энергией активации Е). При применении метода переходного состояния химическое превращение рассматривается как процесс, протекающий во времени. Нас в дальнейшем будет интересовать, в частности, применение теоретических положений, лежащих в основе обоих этих методов, к кинетике химических реакций, протекающих под давлением. [c.82]


    Основные положения и законы химической кинетики, а также метод переходного состояния могут быть применены при описании кинетики гетерогенно-каталитических процессов. Особенность такого описания здесь заключается в известной неопределенности в понятии катализатора и Х1 мического соединения молекулы реагирующего вещества с катализатором. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое может быть строго описано термодинамическими функциями состояния 5, АО, то [c.637]

    На основе метода переходного состояния автором был разработан и применен приближенный метод расчета стерических факторов радикальных реакций. Это перспективный метод, имеющий значение для химической кинетики вообще. [c.8]

    Однако, несмотря на это, было бы неправильным недооценивать метод переходного состояния. Он сыграл положительную роль в развитии химической кинетики, так как в его основе лежат правильные качественные представления о химическом взаимодействии частиц и продолжает оставаться более общим методом подхода к решению задачи о скорости реакции, не перекрытым более общим способом. [c.170]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]


    Основные положения и законы химической кинетики, а также метод переходного состояния могут быть применены при описании кинетики гетерогенно-каталитических процессов. Особенность такого описания здесь заключается в известной неопределенности в понятии катализатора и химического соединения молекулы реагирующего вещества с катализатором. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое может быть строго описано термодинамическими функциями состояния А Я, 5, ДО, то в гетерогенном катализе не всегда ясно, что принимать за молекулярную единицу катализатора. Атомы и молекулы, находящиеся на поверхности раздела фаз, не тождественны атомам и молекулам, находящимся в объеме фазы. Их термодинамические функции состояния отличны от термодинамических функций молекул объемной фазы. В настоящее время нет достаточно надежных методов определения или расчета активности Д Я, 5 и ДО молекул, находящихся на границе раздела фаз. Поэтому при выражении концентрации или активности катализатора, продуктов взаимодействия молекул субстрата с катализатором приходится прибегать к условным понятиям концентрации катализатора, выражая ее через свободную, незанятую поверхность. [c.637]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]

    Для описания кинетики гетерогенно-каталитических процессов применимы основные положения и законы химической кинетики, а также метод переходного состояния, однако имеются определенные трудности. Они заключаются в неопределенности термодинамических функций состояния образующихся веществ на поверхности твердой фазы. Вещества в растворе и в адсорбированном состоянии на твердой поверхности имеют разные значения активности, энергии Гиббса, энтропии и т. д. [c.298]

    При протекании реакций в жидких средах влияние давления на скорость взаимодействия оказывается весьма неоднозначным. Естественно, что скорость химической реакции под давлением будет зависеть от многих факторов стерических особенностей реагентов, вязкости реакционной среды, изменения каталитического действия и т. д. В настоящее время еще не удается построить теорию химической кинетики при высоких давлениях с учетом всех действующих на процесс факторов. Поэтому кинетические закономерности в средах под высоким давлением приходится выводить с помощью ряда приближений. Сейчас в кинетике химических реакций используются два метода метод активных соударений и метод переходного состояния. [c.172]

    С точки зрения теории активных столкновений кинетика реакций в разбавленных растворах не отличается от кинетики газовых реакций. В действительности же многие реакции в жидких растворах существенно отличаются от газовых, так как скорость их в значительной мере определяется взаимодействием реагирующих веществ с растворителем. Среда оказывает чрезвычайно большое влияние на скорость реакций в жидкой фазе, как это было впервые показано Н. А. Меншуткиным. Следует также отметить значительное число так называемых медленных реакций в жидкой фазе, которые, как и медленные реакции в газовой фазе, не могут быть удовлетворительно интерпретированы теорией активных столкновений. С точки зрения теории метода переходного состояния, медленные реакции характеризуются значительным уменьшением энтропии при образовании активированных комплексов. Таким образом, при пользовании этим методом учитываются некоторые особенности химического строения реагирующих веществ (учет изменения числа степеней свободы при образовании активированного комплекса). [c.127]

    В основе теории химической кинетики лежит представление о так называемых активных молекулах В химической кинетике для теоретического расчета констант скорости используются два метода метод соударений и метод переходного состояния Оба метода друг другу не противоречат, а представляют собой лишь разные способы теоретического обоснования одного и того же явления [c.90]


    Метод переходного состояния в химической кинетике [c.26]

    Монография состоит из десяти глав. В первой главе, посвященной общим кинетическим закономерностям химических реакций, рассматриваются простые и сложные реакции и химическое равновесие. Вторая глава посвящена вопросу о химическом механизме реакций. В ней рассмотрены экспериментальные методы изучения механизма реакций, вопрос о промежуточных веществах и реакции свободных атомов и радикалов. Третья глава посвящена теории элементарных химических процессов, включая теорию столкновений и метод переходного состояния. В четвертой главе рассматриваются бимолекулярные реакции различных типов, а также вопрос о зависимости скорости этих реакций от строения реагирующих частиц, и в пятой главе — мономолекулярные и тримолекулярные реакции. Шестая глава посвящена вопросу об обмене знергии при соударениях молекул, играющем основную роль в процессах их термической активации и дезактивации. В седьмой главе рассмотрены фотохимические реакции, в восьмой — реакции в электрическом разряде и вкратце, что, может быть, не соответствует их все возрастающему значению,— радиационнохимические реакции. Девятая глава посвящена цепным химическим реакциям и последняя, десятая, глава — кинетике реакций в пламенах. В этой главе рассматривается также вопрос о равновесиях в пламенах. [c.4]

    Один из главных недостатков теории столкновений — необходимость расчета зависящего от энергии сечения реакции. Как было показано выше, для такого расчета требуется знание потенциальной поверхности реакции и проведение сложных вычислений методами квантовой теории рассеяния. Ввиду этих трудностей и исходя из основной задачи химической кинетики — создания теории, связывающей строение реагентов с их реакционной способностью, — значительные усилия были направлены на поиск простых феноменологических моделей, отвечающих этой цели. Наибольшее распространение из такого рода теорий получил метод переходного состояния (МПС), называемый также методом активированного комплекса, развитый главным образом Г. Эйрингом [21, 34]. Для применения этого метода в отличие от теории столкновений требуется только весьма ограниченная информация о потенциальной поверхности. [c.163]

    Вычисление абсолютных скоростей реакции , стерических факторов и т. и. по теории переходного состояния базируется на экспериментальных спектроскопических данных. На этом основании можно построить более или менее близкую к объективной реальности модель химической структуры исходных и промежуточных реагирующих веществ. Спектроскопия является весьма чувствительным методом, позволяющим изучать кинетику и механизм химической реакции, не нарушая и не прерывая ее. Особенно большое значение спектроскопический метод имеет при изучении сложных газовых реакций, сопровождающихся очень быстрым возникновением промежуточных реагирующих веществ. [c.91]

    Одним из главных успехов химической кинетики было создание в 30-х годах главным образом Эйрингом и его сотрудниками теории переходного состояния в химических реакциях [2]. Эта теория впервые дала прямую количественную связь независящей от температуры части константы скорости от строения атомов и молекул, участвующих в химическом превращении. К сожалению, хотя сейчас есть много методов количественного изучения нормальных или основных состояний молекул, мы почти безоружны, когда хотим исследовать структуру сильно возбужденных переходных состояний. [c.14]

    Даже не задаваясь целью абсолютных расчетов скорости, метод можно с успехом применять для получения различных качественных или полуколичественных выводов в химической кинетике. Для этого удобно использовать термодинамическую формулировку теории переходного состояния. Выражая константу равновесия образования активированного комплекса из исходных веществ (уравнение И.З), как [c.35]

    Построение графиков. В курсе обучения физической химии широко применяют графики, позволяющие иллюстрировать соотношения между переменными. На дисплее компьютера можно представить любой график в пределах разрешающей способности эксплуатируемой системы. В изометрической проекции можно даже изобразить сложные трехмерные диаграммы, такие как орбитальные или энергетические функции переходных состояний. Практически любой тип компьютера можно использовать для создания, воспроизведения и размножения таких рисунков на внешнем цифровом графопостроителе. Дополнительные удобства использования микрокомпьютера заключаются в возможности получения оператором значений параметров и масштаба для построения графиков в реальном времени. В одной из работ [21] было использовано быстрое переключение между двумя незначительно различающимися кривыми, подчеркивающее малые различия между кривы.ми титрования слабой и сильной кислот. Идентичные части двух кривых остаются неизменными, тогда как различающиеся мигают. Этот метод можно применять и во многих других случаях. Например, сопоставление точных и приблизительных решений данной химической системы является задачей сравнения с использованием математических преобразований. Снятие ограничений с применимости классических аппроксимаций, таких, как рассмотрение стационарных состояний в кинетике или упрощение формулы pH для разбавленных растворов, позволяет математические рассуждения заменить эмпирическим подходом. Для данного набора параметров можно рассчитать, изобразить графически и сопоставить, как указано выше, обе зависимости — точную и примерную. Затем студент может изменить значения некоторых параметров (концентраций, констант скорости. pH и т. д.) и проследить за результатами нового выбора данных по совпадениям и расхождениям двух кривых. [c.94]

    Вторая часть посвящена кинетике химических реакций при высоких давлениях — гомогенным газовым реакциям, гетерогенным газовым каталитическим реакциям, реакциям в жидкой и твердой фазах. Приведены конкретные примеры и дан их кинетический анализ. Критически подойдя к теории переходного состояния, автор показывает целесообразность применения метода активированного комплекса при кинетическом анализе реакций при высоких давлениях. [c.4]

    В книге систематизируются имеющиеся в настоящее время данные по кинетике различных газофазных реакций (распада, ассоциации, замещения и др.) и даны простые правила, с помощью которых могут быть найдены параметры уравнения Аррениуса в рамках теории переходного состояния. Приводятся многочисленные конкретные примеры расчета энергии активации и предэкспонентов различными методами. Автор деталь- но анализирует отдельные элементарные акты газофазных реакций и кинетические теории столкновений и переходного состояния, дает анализ стерического фактора и роли химических переходных состояний в сложных реакциях, стерических затруднений резонансу в переходном комплексе. Большое внимание уделяется вопросу о роли процессов переноса энергии при газофазных реакциях и реакциям ионов. [c.6]

    Крупнейшие успехи были связаны с применением изотопных методов. Многое для решения проблем механизма химических и биологических процессов дали изотопные индикаторы. Эти методы, несомненно, будут получать все возрастающее распространение. Однако применение изотопной метки — лишь один из изотопных методов и притом наиболее примитивный. Незаслуженно задержалось развитие других не менее эффективных способов применения изотопов к изучению механизма реакций. Кинетический изотопный эффект позволяет судить о природе переходных состояний в реакциях. Этот вопрос взаимосвязан с теорией химической кинетики, так как, только зная строение переходных комплексов, можно предсказывать и вычислять скорости реакций. Еще менее применяется метод изотопного разбавления, обнаруживающий промежуточные вещества реакций даже при такой малой их концентрации, когда они не наблюдаются никакими прямыми способами, в том числе спектральными. [c.496]

    В разделе Химическая реакция (кн. I, стр. 85) уже рассматривалась физико-химия переходного состояния (активированного комплекса). Изучающему органическую химию должно быть ясно, насколько важно знание параметров переходного состояния данной реакции для количественного предвидения ее течения. Между тем до настоящего времени нет способов установления строения активированного комплекса, подобных уверенным химическим и физическим методам установления структурной формулы обычных молекул. Это обусловлено тем, что концентрация обязательно неустойчивого переходного состояния, находящегося в энергетическом максимуме ( горбе ), исчезающе мала по сравнению с остальной частью реакционной массы, и активированный комплекс не может быть ни отделен от нее, ни индивидуализирован. Хотя можно высказать надежду, что методы ЭПР, ЯМР и оптические методы, развиваясь, внесут свой вклад в суждение о строении переходного состояния, в настоящее время приходится выводить формулы переходного состояния косвенным путем, основываясь на данных стереохимического течения реакции, ее кинетики в разных растворителях и их смесях, на использовании изотопного эффекта, на энергетических и геометрических соображениях. Наконец, полезен постулат Хэммонда. [c.589]

    Для расчета основных величин молекулярной динамики (сечения, угловые и энергетические распределения) и химической кинетики (коэффициенты скоростей химических реакций) в настоящее время применяется пять методйв 1) метод переходного состояния, 2) метод классических траекторий, 3) полу классическое приближение , 4) квантовые расчеты, [c.18]

    При исследовании кинетики химических реакций в газах часто возникает необходимость расчета сечений и вероятностей физико-химических процессов с участием тяжелых частиц (атомов, молекул, ионов). Эти сечения могут быть получены с использованием статистического или динамического подходов. Статистические методы (например, метод переходного состояния, теория РРКМ), как правило, приводят к аналитическим выражениям для рассчитываемых величин, моделирование же динамики взаимодействия частиц практически всегда требует использования численных методов. При этом, однако, класс процессов и систем, исследования которых возможно с использованием динамического подхода, значительно шире, чем класс процессов и систем, для которых применимо статистическое описание. В ряде случаев применимость того или иного статистического метода может быть проверена только путем динамических расчетов. [c.50]

    Новые методы теории химической кинетики позволяют в принципе приблизительно вычислять константы скоростей, а следовательно, и отношения кп/кв, вовсе не прибегая к опытному изучению кинетики. Сейчас, однако, такие расчеты еще возможны лишь для простых молекул, для которых можно построить диаграмму энергии в функции от междуядерпых расстояний ( энергетическую карту>), но и в этих случаях приходится пользоваться эмпирическими упрощающими допущениями. Для этого пользуются методом переходного состояния или, как его еще называют,— методом активного комплекса. [c.188]

    Экспериментальные методы фемтохимии основываются на достижениях фемтосекундной спектроскопии (см. разд. 5.2.9). Можно вьщелить три основных направления этой новой области исследований динамика внутримолекулярных процессов и переходного состояния при химическом превращении кинетика сверхбыстрых химических реакций управление внутримолекулярной динамикой и элементарным химическим актом. Эти три направления кратко описаны в последующих разделах. Приведенные примеры взяты из обзора А. Зевайла. [c.170]

    Разработанный Ферштом эмпирический подход к изучению термодинамических и кинетических аспектов свертывания белковой цепи с привлечением сайт-направленного мутагенеза позволил автору и сотрудникам проанализировать все этапы формирования трехмерной структуры белка (барназы), не содержащего дисульфидных связей [31-33]. Изучение обратимой денатурации начинается с тщательного визуального анализа трехмерной структуры белка с целью выявления остатков, которые предположительно могут играть важную роль в структурной стабилизации и кинетике свертывания. Следующий этап заключается в модификации потенциально важных для сборки межостаточных взаимодействий путем специальных химических изменений белковых цепей актуальных остатков и сайт-направленного мутагенеза. Завершается этап составлением оптимального набора и его синтеза методами генной инженерии. Далее проводятся термодинамические и кинетические экспериментальные исследования механизма ренатурации (денатурации) нативного белка и мутантов, определения констант равновесия, констант скорости и величин изменений свободной энергии Гиббса стабильных структур, промежуточных и переходных состояний. Найденные значения используются для построения энергетических профилей путей свертывания белковых цепей дикого и мутантного типов. На их основе определяются разностные энергетические диаграммы, которые показывают различия в уровнях энергии всех состояний на пути свертывания белка и мутантов. Реализация описанной процедуры приводит к эмпирическим зависимостям между важными для свертывания белковой цепи взаимодействиями боковых цепей и параметрами, по мысли Фершта, характеризующими кинетику, равновесное состояние и механизм ренатурации [И]. Каждая мутация, которая в [c.87]

    В первом разделе Теоретические основы изложены представления о структуре и типах химической связи в органических, металлоорганических и комплексных соединениях, о молекулярных орбиталях и взаимном влиянии атомов в этих молекулах. На уровне механизмов и типов переходных состояний обсуждается реакционная способность органических соединений. Рассмотрены особенности кинетики и термодинамики органических реакций, типы элёктро- и фотохимических реакций с участием органических молекул. Изложены современные методы исследования структуры органических соединений. [c.3]

    Кроме вопросов статической структурной химии, таких как идентификация протонов, хрушшровок атомов и молекул в целом, ЯМР-методом решаются вопросы динамики молекул — конформационной химии, кинетики и механизмов химических реакций, свойств переходных состояний и др. [c.127]

    Традиционно развитие химической кинетики пропсходп,тю иа базе стационарных исс.педований. В последнее время все большее внимание уделяется нестационарным методам. Это вызвано тем, что переходные режимы, предшествующие достижению стационарных состояний, иесут важную информацию об особенностях протекания реакций. Под релаксацией понимается достижение стационарного состояния в результате возмущений концентраций реагентов или воздействия других факторов. Основными характеристиками нестационарного поведения реакций являются времена релаксаций. [c.208]

    В гипотезе Аррениуса в скрытой форме содержалась возможность логического перехода к истолкованию энергии Е как энергии, необходимой для образования из исходных молекул переходного состояния, или активированного комплекса. Представлялось заманчивым найти путь априорного расчета энергии активации. В 1928 г. Лондон и предложил основанный на применении квантов охимических методов путь для расчета энергии активированного комплекса, исходя из предполагаемой его структуры, как и при расчете энергии стабильных молекул — исходных веществ реакции. В принципе, применяя этот метод, можно рассчитать весь энергетический путь реакции — от исходных веществ через активированный комплекс до конечных ее продуктов. Диаграммы, показывающие изменение потенциальной энергии в зависимости от изменения межатомных расстояний, позволяют судить об оптимальном пути реакции. С работой Эйринга и Поляни (1931) такой метод построения поверхностей потенциальной энергии нашел широкое применение в химической кинетике. [c.152]

    В заключение мы обратим внимание на два момента. Создание методов изучения быстропротекающих реакций является необходимой предпосылкой, как пишет Эмануэль в предисловии к монографии Колдина, стратегического наступления химической кинетики в области органической химии и биохимии, а также неорганической химии и химической технологии. Но изучение быстропротекающих реакций подорвало в то же время и основу основ классической химической кинетики — то толкование энергии активации, которое дает теория переходного состояния, а именно положение о том, что энергия активации представляет высоту потенциального барьера, в структурном отношенйи обусловленного растяжением химических связей. Оказывается, в энергию активации быстрых реакций существенный вклад могут вносить и другие факторы [59, с. 290]. [c.317]

    Теория переходного состояния. Кроме изложенной выше теории столкновений, существует другой подход к теории кинетики химических реакций, включающий понятие активного комплекса. Оба эти метода не являются взаимно исключающими, а каждый из них имеет свои преимущества и свои едостатки. Теория столкновений основана на идеях, знакомых большинству научных работников, и требует легко осуществимых вычислений. Теория переходного состояния, с другой стороны, содержит идеи, чуждые опыту большинства биохимиков. хотя общую картину, даваемую этим методом, нетрудно охватить. Преимущество теории переходного состояния состоит в том, что здесь все виды реакций трактуются одинаковым способом, тогда как на основе теории столкновений бимолекулярные и мономолекуляр-ные реакции рассматриваются различно. [c.64]


Смотреть страницы где упоминается термин Метод переходного состояния в химической кинетике: [c.22]    [c.542]    [c.6]    [c.137]    [c.375]   
Смотреть главы в:

Введение в кинетику гетерогенных каталитических реакций -> Метод переходного состояния в химической кинетике




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Переходное состояние метод метод

Состояние переходное



© 2025 chem21.info Реклама на сайте