Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомы в молекулах

Рис. 11. Тетраэдрическое расположение связей атомов углерода допускает две конфигурации, одна из которых является зеркальным отображением другой. На рисунке показаны два возможных варианта расположения атомов в молекуле молочной кислоты. Рис. 11. <a href="/info/594429">Тетраэдрическое расположение</a> связей атомов углерода допускает две конфигурации, одна из которых является <a href="/info/1372835">зеркальным отображением</a> другой. На рисунке показаны два <a href="/info/27323">возможных варианта</a> расположения атомов в <a href="/info/201716">молекуле молочной</a> кислоты.

    Теория валентных связей (локализованных электронных пар) исходит из положения, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных [c.65]

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]

    Пропан и бутан — тоже газы. Однако по мере увеличения числа углеродных атомов в молекуле углеводорода он все легче превращается в жидкость. Это правило — общее для органических соединений. Холода антарктической зимы достаточно, чтобы превратить в жидкость [c.21]

    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]

    В то же время в молекулах даже простейших органических соединений содержится десять и более атомов, а нередко число атомов в молекуле органического соединения измеряется несколькими десятками. Молекулы же таких соединений, как крахмал или белок, можно без всякого преувеличения назвать гигантскими в них насчитываются тысячи и даже сотни тысяч атомов. [c.73]

    До настоящего времени, помимо нескольких установок окисления природного газа, окисление парафиновых углеводородов применялось )В промышленном масштабе главным образом при переработке твердого парафина для получения из этой смеси углеводородов жирных кислот, содержащих 20—25 углеродных атомов в молекуле. Окисление парафина сопровождается разрывом углеродных цепей с образованием жирных кислот различного молекулярного веса. Смеси сырых жирных кислот разделяют ректификацией на остаток и три широкие фракции  [c.10]


    Для окисления используют парафин молекулярного веса 250—420, что соответствует 18—30 углеродным атомам в молекуле с температурой плавления от 28 до 65°. Наиболее подходящей для этой цели является смесь парафиновых углеводородов с 19—24 атомами С, с температурой плавления 32—52°, содержащихся в мягком парафине 40/42 и твердом парафине 50/52. [c.162]

    В последнее время разработан процесс, позволяющий выделить из нефтяных фракций парафиновые углеводороды нормального строения, т. е. наиболее ценные компоненты, при помощи так называемой экстрактивной кристаллизации с мочевиной. Этот метод дает возможность выделить из нефтяных дистиллятов парафиновые углеводороды нормального строения, содержащие 6—20 углеродных атомов в молекуле, с высокой степенью чистоты. [c.15]

    Нефть является также источником получения таких высокомолекулярных продуктов, как твердый парафин и церезин, представляющие собой смеси углеводородов, содержащих примерно 20—25 углеродных атомов в молекуле и больше. [c.12]

    Можно принять, что к равен для газов одноатомных— 1,67 двухатомных — 1,41 трехатомнь х—1,3 (в частности, показатель адиабаты для метана равен 1,3). Таким образом, число К обусловливается числом атомов в молекуле. Для реальных газов коэффициент К есть величина переменная, являющаяся функцией температуры. При повышении температуры коэффициент К убывает. [c.32]

    Таким образом, сырьем для получения низкомолекулярных парафиновых углеводородов являются природные газы, отходящие газы нефтеперерабатывающих установок, газообразные продукты гидрогенизации каменного или бурого угля. Значительные количества твердого парафина можно получать из нефти или бурого угля. Нефть может служить исходным сырьем также и для получения углеводородов среднего молекулярного веса, содержащих б—20 углеродных атомов в молекуле. Парафиновые углеводороды нормального строения такого молекулярного веса можно выделить в виде продуктов присоединения при обработке соответствующих фракций мочевиной. [c.16]

    Человек научился с помощью обычных химических реакций по своему усмотрению перестраивать молекулы. Почему бы не попытаться перестраивать ядра атомов, используя ядерные реакции Протоны и нейтроны связаны гораздо прочнее, чем атомы в молекуле, и обычные методы, используемые для проведения обычных химических реакций, естественно, к успеху не приведут. Но ведь можно попытаться разработать новые методы. [c.170]

    Твердые парафины представляют парафиновые углеводороды, содержащие примерно 20—30 углеродных атомов в молекуле. Плавящиеся при 30—40° парафины обычно известны в торговле как спичечный парафин . Мягкие парафины плавятся при 38—42°, средние парафины— при 44—46° и твердые — при 50—65°. Как правило, ценность сортов парафина возрастает с повышением температуры плавления. [c.51]

    Однако высокомолекулярные алифатические углеводороды не удается получать из нефти с той степенью чистоты и однородности, которые требуются для дальнейшей химической переработки. Из каменноугольной смолы фракционированной перегонкой иногда с последующей кристаллизацией легко можно получать индивидуальные соединения. Применение аналогичных методов при переработке нефти вследствие большей сложности ее состава не позволяет достигнуть этой цели. Выделение фракций с широкими пределами кипения, содержащих углеводороды с 10—20 углеродными атомами в молекуле, также непригодно для получения сырья, предназначаемого для последующей химической переработки. Наиболее пригодные для переработки углеводороды нормального строения в подобных широких фракциях представляют собой смеси с парафиновыми углеводородами изостроения (с различной сте- [c.8]

    Углеводороды промежуточного молекулярного веса от декана до эйкозана, содержащие 10—20 углеродных атомов в молекуле, с чистотой, обычно требуемой для дальнейшей химической переработки, до последнего времени из нефти получать не удавалось. [c.12]

    Получаемый три синтезе сырой продукт для дальнейшей переработки предварительно разделяют на фракции, в том числе фракцию, выкипающую, з пределах среднего масла, т. е. а интервале 180—320°, так называемый когазин II, содержащую ценные для промышленности смеси углеводородов с 10—20 углеродными атомами в молекуле. [c.17]

    Число углеродных атомов в молекуле [c.60]

    В та<бл. 58 приведена зависимость температуры плавления от числа углеродных атомов в молекуле или молекулярного веса таких парафинов [77]. [c.130]

    Особо следует отметить, что это соединение образуется лишь при хлорировании углеводородов, содержащих не менее 5 углеродных атомов в молекуле. [c.190]


    В области химической переработки парафиновых углеводородов, содержащих 10— 20 углеродных атомов в молекуле, положение в Германии резко изменилось, когда фирме Рурхеми удалось довести процесс Фишера—Тропша (синтез углеводородов) до промышленного осуществления. Как известно, этот синтез основан на каталитическом гидрировании окиси и двуокиси углерода на кобальтовом катализаторе, активированном окисью тория. При этом процессе получают широкую гамму алифатических углеводородов высокой частоты. [c.9]

    Продукты хлорирования высокомолекулярных парафинов, содержащих 10—20 углеродных атомов в молекуле, твердого парафина и особенно парафинов нефти и высщих нефтяных фракций уже при сто-я-нии сравнительно быстро отщепляют хлористый водород при этом окраска их темнеет. При более высоких температурах нагрева часто в значительной степени протекает дегидрохлорирование даже в отсутствие катализатора. Например, твердый парафин с температурой плавления 45° легко хлорируется при 155—160°. При нагреве полученных хлоридов до 300° весь связанный хлор практически полностью отщепляется [255]. [c.250]

    При стирке шерстяного белья наилучшим моющим действием обладают соли сульфокислот с числом углеродных атомов 15—17, в то время как при стирке хлопчатобумажного белья моющая способность становится т м больше, чем выше число углеродных атомов в молекуле соли сульфокислоты. В этом отношении первое место занимают соли сульфокислот гексадекана, октадекана и в особенности эйкозана. Эти выводы справедливы только к солям сульфокислот, получаемых сульфохлорированием. [c.411]

    В нредыдуш их разделах были рассмотрены способы получения олефинов дегидрированием парафиновых углеводородов без уменьшения числа углеродных атомов в молекуле. Этаи дегидрируется в этилен простым нагреванием до высокой температуры, более высокомолекулярные углеводороды, как пропан, бутан, пентан, дегидрируются каталитическим способом. Высокомолекулярные парафиновые углеводороды — гексан, гептан и т. д. — не могут быть превращены экономически приемлемым способом в олефины с раттм числом атомов С, так как в этом случае преобладают процессы крекинга. [c.49]

    Вообще для сложной молекулы п = 3 N — 6, где N — число атомов в молекуле. Для линейной молекулы п = 3 N — 5. Необходимо заметить, что нормальные координаты, вообще говоря, являются линейными комбинациями координат положения, и не обязательно имеется простая связь между нормальными координатами и изменением длины данной связи. [c.186]

    С помощью химических символов легко показать количество атомов в молекуле. Так, молекулу водорода, состоящую из двух атомов водорода, записывают как Нг, а молекулу воды, содержащую два атома водорода и один атом кислорода,— как НаО. (Знак без числового индекса, это легко увидеть, означает единичный атом.) Углекислый газ — это СОа, серная кислота — HaSOi, а хлорид [c.64]

    В более сложных органических молекулах расположение атомов может быть различным, и, следовательно, возможно существование изомеров. Различие в расположении атомов в молекулах цианатов и фульминатов легко обнаружить, так как каждая молекула содержит всего несколько атомов. Формулу цианата серебра можно записать как AgO N, а формулу фульмината — как AgN O. [c.76]

    Когазин II содержит интересную во многих отношениях смесь парафиновых углеводородов с 10—20 углеродными атомами в молекуле. Кроме того, в нем содержится еще в среднем около 10% соединений, абсорбируемых смесью пятиокиси фосфора с серной кислотой, главным образом олефиновых углеводородов и кислородных соединений. Для превращени5г в насыщенные углеводороды эти соединения восстанавливают на сульфидных гидрирующих катализаторах, например сульфиде никеля и сульфиде вольфрама, при 300—350° и 200 ат. Так получают бесцветную и прозрачную смесь полностью насыщенных парафиновых углеводородов с различной длиной углеродной цепи, содержащих 15— 20% изопарафинов. Такая смесь высокомолекулярных парафиновых углеводородов является превосходным сырьем для химической переработки. [c.9]

    Пластинчатый парафин содержит в основном парафиновые углеводороды С 8 — С28 наряду с небольшим количеством высокомолекулярных парафинов изостроения главным образом с одной боковой цепью. Суммарный парафин, выделяемый из сырой смолы, не обнаруживает такой поразительной однородности состава. При деструктивной перегонке происходит расщепление парафинов изостроенпя, и, следовательно, содержание парафинов в продукте снижается. Парафин иэ сырой смолы, не подвергнутой деструктивной перегонке, состоит из изопарафиновых углеводородов с 23—26 углеродными атомами в молекуле и парафиновых углеводородов нормального строения с 26— 28 углеродными атомами. После однократной перегонки парафины изостроения содержат уже только 21—24 углеродных атома, а большая часть изопарафинов распадается, давая дополнительные парафиновые углеводороды нормального строения е меньшим числом углеродных атомов. При вторичной перегонке этот процесс продолжается. Число углеродных атомов в молекулах парафинов изостроения составляет всего 18—22 и в пара фино,вых нормального строения 21—26. После третьей перегонки парафин содержит углеводороды изостроения с 20— 21 углеродным атомом и парафиновые углеводороды нормального строения с 18—25 атомами углерода. Следовательно, при деструктивной перегонке состав твердых парафинов претерпевает глубокие изменения. Содержание парафиновых углеводородов изостроения уменьшается, наряду с этим происходит и частичное разложение парафиновых углеводородов нормального строения. [c.53]

    В технических микрокристаллических парафинах, выделенных из более высококипящих фракций, чем парафиновые дистилляты, обнаружено преобладание структур нафтенового и изоалка-нового характера. Они состоят главным образом из углеводородов, содержащих 34—60 углеродных атомов в молекуле, и имеют температуру плавления в пределах 60—90° [53]. О высокомолекулярных парафинах, получаемых синтез-ом Фишера—Тропша, см. стр. 128. [c.54]

    В качестве исходного материала можно применять также дихлорпропаны. Хлоролиз под нормальным давлением наиболее целесообразно, проводить при температуре 460—480°. При этом требуется присутствие по меньшей мере стехиометрического количества хлора, необходимого для замещения всех еще содержащихся в хлорпропане атомов водорода (в среднем по 2 атома в молекуле). Следует избегать чрезмерно большого избытка хлора, так как в этом случае возмолаю частичное превращение тетрахлорэтилена в гексахлорэтан [102]. [c.191]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    При повышении температуры увеличивается количество нитропара-финов с меньшим, чем у исходного углеводорода, числом углеродных атомов в молекуле, т. е. происходит расщепление молекул. [c.283]

    Разность между энтальпией моля чистого химического соединения и суммарной энтальпией хилшческпх элементов, пз которых оно состоит, называется теплотой образования вещества (АЯ ). Эта величина определяет изменение энергии, происходящее при соединении атомов в молекулу. Значение теилоты образования следует давать с указанием температуры, давления и агрегатного состояния веществ, которым оно соответствует. Давление 1 атм и темпе- [c.40]

    Согласно этому соотношению уменьшение массы на 0,030376 а. е. м. при образозании ядра гелия из двух протонов и двух нейтронов соответствует выделению огромного количества энергии в 28, 2 МэВ (1 МэВ = 10 эВ). Отсюда средняя энергия связи в ядре на один нуклон составляет примерно 7 МэВ. Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле ( 5 эВ). Поэтому-то при химических превращениях веществ атомные ядра не изменяются. [c.9]


Смотреть страницы где упоминается термин Атомы в молекулах: [c.25]    [c.80]    [c.59]    [c.61]    [c.233]    [c.248]    [c.348]    [c.414]    [c.11]    [c.319]    [c.48]    [c.32]    [c.198]   
Смотреть главы в:

Квантовая механика и квантовая химия -> Атомы в молекулах

Квантовая механика и квантовая химия -> Атомы в молекулах




ПОИСК







© 2025 chem21.info Реклама на сайте