Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение химического состава нефти и нефтяных фракций

    Молекулярная масса М - один из важнейших показателей, широко используемых при подсчете теплоты парообразовании, объема паров, парциального давления, а также при определении химического состава узких нефтяных фракций. Молекулярная масса тем больше, чем выше их температура кипения. Наряду с этим выделенные из различных нефтей фракции, выкипающие в одном интервале температур, имеют различные молекулярные массы, т.к. углеводородный состав этих фракций различен. [c.16]


    Нефти и высококипяш ие нефтепродукты обладают замечательным свойством светиться под действием ультрафиолетовых лучей. На использовании этой особенности нефтей основаны методы люминесцентного анализа для познания химической природы сложных молекул, входяш их в состав нефтей и вызывающих люминесцентное свечение. Фотолюминесценция или излучение, возникающее лри возбуждении светом, как правило, наблюдается у молекул довольно сложного химического состава и строения. Существует, следовательно определенная связь между строением вещества и склонностью его к люминесценции. Поэтому исследование спектра люминесценции нефтепродуктов может дать весьма ценные сведения для суждения о строении ароматических структурных звеньев сложных молекул, входящих в состав высококипящих нефтяных фракций. [c.482]

    Определить индивидуальный химический состав нефти практически невозможно, поэтому ограничиваются определением группового химического состава, т. е. отдельных групп и рядов углеводородов. Для газов и более легких нефтяных фракций удается определять индивидуальный химический состав. [c.7]

    Техника и стоимость перевода других видов топлива в газы, взаимозаменяемые с природным газом, варьируются в очень широких пределах и зависят главным образом от свойств сырья и, следовательно, простоты его газификации. Качественный заменитель можно получать практически из любого ископаемого топлива, например из угля, сырой нефти или любой углеводородной фракции этих сырьевых материалов. В то же время сложность и стоимость процесса переработки будут значительно меньше, если относительная молекулярная масса топлива будет низкой, а химический состав его простым. Легкие углеводороды, например сжиженный нефтяной газ, лигроин, газовый конденсат или реактивное топливо, в определенных условиях можно газифицировать довольно просто с помощью пара. Более тяжелые фракции реагируют в таких условиях хуже и для инициирования процесса газификации, как правило, требуют наличия свободного водорода, получаемого во вспомогательном блоке. [c.20]

    Молекулярная масса — важнейшая характеристика нефти и нефтепродуктов. Этот показатель дает среднее значение молекулярной массы веществ, входящих в состав той или иной фракции нефти, и позволяет сделать заключение о составе нефтепродуктов. Он широко применяется для расчетов аппаратуры нефтеперерабатывающих заводов. Молекулярная масса связана с температурой кипения продуктов и используется для определения молекулярной рефракции, парахора (эмпирическая зависимость, позволяющая охарактеризовать химический состав нефтяных фракций) и др. [c.62]


    Тепловые свойства нефти имеют важное значение в технологии ее переработки, поскольку все технологические процессы связаны с процессами нагревания и охлаждения, а их расчет соответственно базируется на знании тепловых свойств. К ним относятся все известные тепловые физические величины (теплоемкость, теплопроводность, энтальпия и др.), но применительно к нефтяным фракциям, имеющим очень сложный химический состав, определение этих величин носит специфичный характер и требует специального рассмотрения. [c.150]

    Товарные бензины не являются фракцией, вьщеленной непосредственно из нефти (рис. 5.1). Они являются смесью компонентов (фракций), полученных непосредственно из нефти на АВТ путем термокаталитических превращений нефтяных дистиллятов, с тем чтобы обеспечить требуемые химический состав, октановое число, а также другие показатели качества определенной марки бензина. Ниже приведен примерный фупповой углеводородный состав бензиновых компонентов, получаемых этими (см. рис. 5.1) процессами [в %(мас.)]  [c.237]

    Некоторые исследователи при изучении высококипящих компонентов применяют кольцевой анализ — метод n-d-M. Предложены расчетные форму лы для определения доли атомов углерода приходящейся на нафтеновые, ароматические кольца и парафиновые цепи с учетом влияния химического состава на такие аддитивные свойства смесей, как плотность, показатель преломления и молекулярная масса. Применительно к сераорганическим соединениям кольцевой анализ включает определение необходимых для расчета параметров до и после удаления серусодержащих компонентов из нефтяной фракции [25]. Такими расчетными методами определен состав сераорганических соединений (сульфидов и тиофенов) масляной фракции 350—450 С самотлорской нефти [26]. Расчет проводился на основании данных о содержании серы, о молекулярной массе и групповом составе сернисто-ароматических концентратов до и после удаления из них соединений серы. Однако эти расчетные методы дают лишь приближенное представление о содержании отдельных частей высокомолекулярных соединений и в связи с этим не получили широкого распространения. [c.11]

    Как- известно, нефтяные фракции представляют собой сложную смесь углеводородов различных классов. Химическое использование как самой нефти, так и ее отдельных фракций требует знания химического состава нефти. В случае бензинов, например, важнейшей характеристикой являются их антидетонационные свойства, которые выражают в виде октановых чисел. Эти свойства бензинов зависят от структуры тех углеводородов, которые входят в состав бензинов. Естественно, что наиболее надежным методом исследования химического состава бензинов явилось бы определение содержания индивидуальных углеводородов, из которых они состоят. Однако задача определения индивидуального углеводородного состава, хотя и разрешимая в случае бензиновых фракций, является сложной и трудоемкой и требует даже в этом простейшем случае применения комбинации различных методов исследования, в том числе и оптических. [c.16]

    Для установления эффективности действия сульфонатных (и других) присадок в зависимости от группового углеводородного состава сырья были исследованы масляные фракции 350—420 °С и 420—500 °С и остаточные выше 500 °С, выделенные вакуумной перегонкой из мазутов трех нефтей, резко различающихся по физико-химическим свойствам и углеводородному составу (бала-ханская масляная и балаханская тяжелая нефти, а также нефть месторождения Нефтяные камни). Углеводородный состав фракций был определен адсорбционной хроматографией на крупнопористом силикагеле АСК [15, с. 73]. В результате исследования структурно-группового состава и свойств отдельных групп углеводородов, выделенных из этих фракций, было установлено, что парафино-нафтеновые углеводороды из фракций балаханской нефти являются лучшим сырьем для синтеза присадок, чем те же углеводороды, выделенные из фракций двух других нефтей, причем наиболее низким качеством отличаются парафино-нафтеновые углеводороды балаханской тяжелой нефти. [c.72]

    Ознакомление с методами исследования нефти показывает, что полная расшифровка химического состава любой нефтяной фракции сопряжена с большой затратой труда, материала, времени и требует сложного аналитического оборудования. Поэтому, даже по отношению к бензинам, т. е. наименее сложным нефтяным погонам, индивидуальный химггческий состав исследуется только в специальных случаях. На практике чаще ограничиваются болое простыми определениями группового химического состава, устанавливающими количественное содержание во фракциях бонзива непредельных, ароматических, нафтеновых и парафиновых угл( -водородов. Этот так называемый групповой анализ приобрел особое значение с тех пор, как была установлена зависимость эксплуатационных свойств нефтяных продуктов от их химического состава. [c.96]


    Как это следует из предыдущих глав, определение индивидуального химического состава даже бензиновых фракций нефти представляет собой довольно сложную задачу, поэтому такой анализ проводится в специальных случаях и требует значительного вре-ыенн. Обычно используют более быстрые методы анализа, которые позволяют определить групповой или структурно-групповой состав нефтяных фракций. [c.86]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    При низкотемпературном крекинге характер исходного сырья оказывает большое влияние, в первую очередь, на скорость крекинга. Сравнивая углеводороды примерно одинакового молекулярного веса, можно их расположить в следующий ряд по относительной легкости разложения парафины, нафтены, ароматические углеводороды (последние труднее всего подвергаются крекингу). При одинаковой температуре высококипящие нефтяные фракции претерпевают крекинг легче, чем низкокипящие фракции, а продукты крекинга крекируются значительно медленнее исходного сырья. Во-вторых, при прочих равных условиях можно ожидать, что природа исходного сырья будет влиять на химический состав получаемого бензина. Например фракция с высоким содеожанием нафтенов может дать бензин с ненормально высоким содержанием нафтеновых и ароматических углеводородов. Правда, состав бензина зависит также в значительной степени и от других факторов, важнейшими из которых являются температура и длительность нагревания. В-третьих, опыт показал, что выход бензина из различного сырья (высококипящих нефтяны.х дестиллатов и тяжелой сырой нефти) зависит iO некоторой степени и от месторождения нефти. В-четвертых, скорость коксообразования по Singer so зависит от химического состава исходного сырья, причем парафинистые нефти образуют меньше кокса, чем беспарафинистые или нефти асфальтового основания при аналогичных условиях крекинга. По данным этого автора керосин практически не образует кокса, соляровое и веретенное масла — очень мало, машинное же и цилиндровое масла — большие количества, а смолы чрезвычайно увеличивают коксообразо-вание. Выход кокса имеет, как будто бы, больше значения для определения деталей крекинг-процесса, чем выход крекинг-бензина (выход последнего бывает одинаковым при определенных температуре и времени контактирования как из тяжелых сырых нефтей, так и из мазута) [c.124]

    Молекулярная масса. Это одна из основных физико-химических характеристик нефтей и получаемых из нее продуктов. Она зависит от их химического и фракционного состава и является среднеарифметическим от молекулярных масс веществ, входящих в состав нефтепродуктов. Для приближенного определения молекулярной массы парафиновых углеводородов пользуются формулой Б. П. Воинова М = 60-Ь0,3 -1-0,00и где I — средняя температура кипения нефтяной фракции, °С ее рассчитывают как среднеарифметическое от температур, при которых перегоняются одинаковые объемы жидкости, например 10%-ные фракции. [c.16]

    Для газов газо-нефтяных залежей выявление геохимических закономерностей в значительной степени затрудняется неоднородностью условий отбора и различиями физических условий в пластах. Определенное влияние на химический состав газов газо-нефтяных залежей оказывает такпчв характер контактирующих с этими газами нефтей. Так, на рис. 75 можно видеть, что показатель сухости газов иаходится в обратной. чявттсимосги от содержания парафиновых углеводородов в легких фракциях нефтей. Чем более предельный характер имеет бензин, тем жирнее газ. Причина этого явления [c.207]

    Учитывая упоминавш)аося уже сложность состава нефти, не нужно забывать, что название выделяемых групп (парафино-нафтеновые, моно-, би- и полна роматические углеводороды) - чисто условно и отражает лишь преимущественное содержание этих классов соединений в вьщеляемой группе, в состав которой, естественно, входят и соединения других, иногда и многих классов, обладающих близкой в условиях разделения адсорбционной способностью. Однако, учитывая широкое распространение этих обозначений вьвделяемых групп и неоднократно доказанную практическую ценность результатов хроматографического определения группового химического состава, мы будем пользоваться этой терминологией, не забьшая об ее условности. При этом мы не исключаем использования терминов легкие , средние и тяжелые ароматические углеводороды, нашедших также широкое применение дпя обозначения аналогичных фракций при хроматографическом разделении нефтяных остатков и масел. [c.12]

    В качестве базовых компонеетов смазки Ниогрин-С были использованы продукты как нефтепереработки, так и нефтехимии печное топливо, абсорбент, представляющие собой отходы нефтехимических производств, летнее дизельное топливо, легкий газойль каталитического крекинга, высокоароматизкрован-ные дистилляты. Анализ физико-химических свойств базовых компонентов профилактической смазки Ниогрин-С показал, что отходы нефтехимического производства отличаются от среднедистиллятных фракций нефтепереработки по своей природе и физико-химическим свойствам. Это создает определенные трудности при получении товарного продукта. Однако к несомненному преимуществу нефтехимического сырья следует отнести его хорошие низкотемпе-ратурнью свойства, что обусловлено особенностями углеводородного состава печного топлива и абсорбента по сравнению с дизельным топливом, полученным прямой перегонкой нефти. В качестве присадки к профилактической смазке использован тяжелый нефтяной остаток — мазут, гудрон или крекинг-остаток, в состав которых входят естественные поверхностно-активные вещества. На основании проведенных исследований разработаны оптимальные компонентные составы профилактической смазки Ниогрин-С, технология производства и технологическая схема ее компаундирования. [c.306]


Смотреть страницы где упоминается термин Определение химического состава нефти и нефтяных фракций: [c.96]    [c.51]    [c.58]    [c.63]    [c.102]   
Смотреть главы в:

Практикум по геохимии горючих ископаемых -> Определение химического состава нефти и нефтяных фракций




ПОИСК





Смотрите так же термины и статьи:

Нефть Нефтяной газ

Нефть фракции



© 2024 chem21.info Реклама на сайте