Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ и идентификация моносахаридов

    АНАЛИЗ И ИДЕНТИФИКАЦИЯ МОНОСАХАРИДОВ  [c.409]

    Гл. 14. АНАЛИЗ и Идентификация моносахаридов [c.414]

    Идентификацию М. осуществляют по характеру моносахаридов, входящих в М., подвижности при электрофорезе и по спектрам ЯМР. Важную роль в анализе играет способность М. расщепляться специфич. ферментами, к-рые могут катализировать гидролиз отдельных гликозидных связей (гидролазы), элиминирование заместителя из положения [c.148]


    Выделенный в индивидуальном состоянии дезоксисахар целесообразно исследовать с помощью ядерного магнитного резонанса (см. стр. 63). Этот метод окончательно доказывает наличие в соединении СН - нлн СНз-группы, и в тех случаях, когда спектр удается полностью расшифровать, он позволяет определить положение СНа-группы и относительную стереохимию всего соединения Для выяснения абсолютной конфигурации моносахарида необходимо химическое расщепление и идентификация осколков обычно это достигается периодатным окт слением моносахарида или какого-либо его производного. Одновременно такое расщепление служит проверкой выводов, сделанных из анализа спектров ядерного магнитного резонанса. [c.256]

    Наиболее обычным объектом для анализа в химии углеводов служат смеси свободных моносахаридов, получаемые как непосредственно из природных источников, так и при гидролизе гликозидов, олиго- и полисахаридов. Другим важным классом соединений, разделение, количественное определение и идентификация которых составляют основу установления строения олиго- и полимерных углеводных цепей методом метилирования, являются полностью или частично метилированные моносахариды. Кроме того, в синтетической химии углеводов приходится встречаться с разделением смесей и идентификацией самых разнообразных производных моносахаридов. Ниже коротко рассматриваются некоторые наиболее употребительные методы анализа углеводов. [c.409]

    Первым хроматографическим методом, примененным для разделения смесей свободных моносахаридов, была хроматография на бумаге . В настоящее время, несомненно, этот метод является наиболее употребительным при анализе моносахаридов и целого ряда их производных. Техника проведения хроматографического разделения (подготовка образцов для анализа, применяемые системы растворителей, способы получения хроматограмм и обнаружение зон) подробно описана в соответствующих руководств ах Величина Нр, характеризующая хроматографическое поведение данного вещества в дайной системе растворителей, служит для идентификации изучаемых соединений с веществами известного строения. Чтобы исключить влияние на Рр изменяющихся условий разделения, обычно сравнивают хроматографическое поведение исследуемого и заведомого моносахарида на одной и той же хроматограмме. [c.410]

    Задача разделения и идентификации метилированных моносахаридов аналогична той, которая возникает при установлении строения олигосахаридов методом метилирования, но отличается от нее, как правило, большей сложностью получаемых смесей и важным значением, которое приобретают для структурного анализа полисахарида компоненты, содержащиеся в смесях в незначительных количествах. Разделение таких смесей предъявляет весьма высокие требования к применяемым методам. [c.496]


    Для установления структуры полисахаридов ГМЦ применяются в комплексе химические, биохимические, хроматографические и спектроскопические методы. Исторически первыми среди них получили развитие химические методы деструкции (кислотный гидролиз, окисление моносахаридов с расщеплением гликольных группировок) или модификации полисахаридов с последующей деградацией (метилирование). Для определения продуктов деградации широко используются хроматографические методы (бумажная, тонкослойная, газожидкостная хроматография) большую роль в последние годы играет масс-спектроскопия, которая применяется не только для идентификации производных, полученных при анализе полисахаридов методом метилирования, но и для анализа олигосахаридов непосредственно после нх перевода в летучие производные. И, наконец, в арсенал современных методов прочно вошла спектроскопия С-ЯМР — недеструктивный метод анализа структуры, позволяющий решить задачу установления строения полисахарида с минимальным использованием традиционных химических методов либо без них. Рассмотрим кратко характеристику этих методов. [c.58]

    Полный гидролиз полисахарида проводят для установления природы и соотношения составляющих его моносахаридных остатков. Качественный анализ гидролизата в настоящее время неизменно выполняют с помощью распределительной хроматографии на бумаге, что требует лишь микроколичеств сахаров и вместе с тем дает возможность идентифицировать присутствующие нейтральные, основные и кислые моносахариды. По хроматографии углеводов существует обширная литература [91, 97, 127, 131, 162]. Было испытано множество систем растворителей и много обнаруживающих реагентов как специфических, так и неспецифических, и составлены таблицы относительных скоростей движения сахаров на бумажных хроматограммах [131]. Для окончательной идентификации определенного сахара не достаточно одного только хроматографического анализа. [c.303]

    Замечательным методом предварительной идентификации компонентов смесей восстанавливающих метилированных моносахаридов, требующим лишь нескольких миллиграммов вещества, является хроматография на бумаге. Для этого метода анализа описано множество систем растворителей и проявляющих реагентов и приведены относительные подвижности наиболее часто встречающихся метилированных моносахаридов. Там, где это возможно, неизвестные метилированные моносахариды следует сопоставлять непосредственно на хроматограммах с известными метилированными моносахаридами. [c.331]

    В наиболее ранних работах разделение и идентификацию углеводов в гидролизатах осуществляли действием химических реагентов (фенилгидразина и др.) с образованием соответствующих производных, позволяющих выделить из смеси отдельные компоненты и установить их природу. Возможность разделения и идентификации этим путем основана на способности моносахаридов давать кристаллизующиеся фенилгидразоны и озазоны, по температурам плавления которых можно установить природу исходных моносахаридов. Такой анализ можно проводить с каплей раствора, наблюдая под микроскопом форму кристаллов и температуру их плавления при медленном нагревании препарата. Подсчетом кристаллов соответствующих фенилпроизводных сахаров О Двайэр [22] количественно определила содержание моносахаридов в некоторых гидролизатах гемицеллюлоз древесины дуба. [c.64]

    Поскольку многие гликопротеины содержат лишь небольшое количество углеводов, для их анализа могут быть использованы протеолитические ферменты (например, проназы) при обработке этими ферментами образуются гликопептиды с небольшим числом аминокислотных остатков, к которым присоединены интактные углеводные звенья. Такие гликопептнды анализируют [188] классическими методами периодатного окисления [189] и метилирования, а также последовательным ферментативным гидролизом (см. разд. 26.3.2.11) для идентификации моносахаридных звеньев, в результате которого получают единственный аминокислотный остаток, связанный с моносахаридным звеном. Установлено, что осуществляются только два типа такой связи 0-гликозидная связь с серином, треонином, гидроксипролином и гидроксилизином, и Л -гликозидная связь с аспарагином. Показано, что в образовании таких связей могут участвовать только пять моносахаридов -арабиноза, D-ксилоза, D-галактоза, 2-ацетамидо-2-дезокси-0-глюкоза и 2-ацетамидо-2-дезокси-0-галактоза. [c.265]

    Начальной стадией структурного анализа полисахарида является изучение его мономерного состава и установление типов связей мономерных звеньев между собой. Для этого проводят полный гидролиз полисахарида или его полностью метилированного производного и периодатное окисление с анализом образующихся продуктов. Способы модификации полисахаридной молекулы (метилирование, окисление) и гидролиза можно считать хорошо разработаннь1ми. Идентификация же получаемых при гидролизе фрагментов молекулы, успешно осуществляемая для самих моносахаридов (кроме отнесения к Г>- или L-pядy), еще недостаточно разработана применительно к метилированным сахарам и продуктам распада по Смиту. Предложенные в самое последнее время методы идентификации, включающие газо-жидкостную хроматографию и масс-спектрометрию, по-видимому, заслуживают самого пристального внимания. Особенна важным было бы здесь создание специальной аппаратуры, позволяющей максимально стандартизировать процесс, сделать его быстрым и надежным. В связи с этим привлекательной кажется идея сочетания газо-жид-костного хроматографа с масс-спектрометром. [c.632]


    Результаты определения в реакционной смеси формальдегида и муравьиной кислоты дают лишь самое общее представление о структуре исходного иолисахарида. Основную информацию получают, изучая окисленный полисахарид — полиальдегид и продукты его деструкции. Наиболее часто используют вариант расщепления по Смиту, заключающийся в преобразовании полнальдегида в высокомолекулярный полиол, его последующем гидролизе и идентификации полученных фрагментов. В результате анализа получают информацию о размерах циклов моносахаридиых звеньев, формирующих макромолекулу исходного иолисахарида, о стеиени [c.65]

    Л егод масс-сиектрометрии используют для идентификации производных не только при анализе полисахаридов методом метилирования, но и при анализе олигосахаридов непосредственно после перевода нх в одно из вышеупомянутых летучих производных [189, 195]. Этим методом могут быть определены молекулярная масса небольших олигосахаридов, а так ке последовательность моносахаридиых остатков и положение гликозидных связей, хотя для этого обычно необходимы сведения о природе входящих в состав олигосахарида мономеров. Основополагающими в этом направлении были исследования масс-спектров метиловых эфиров дисахаридов, выполненные советскими учеными, которыми было показано, что фрагментация обоих моносахаркдных остатков протекает независимо, при этом образуются фрагменты, отражающие природу и последовательность мономерных единиц, и фрагменты, характеризующие положение гликозидной связи [77]. [c.75]

    Как известно, хроматографический анализ имеет свои ограничения хроматографические подвижности некоторых известных, а тем более ранее неизвестных структурных компонентов могут быть очень близкими далее, сахара В- и -ряда хроматографически неразличимы. Поэтому идентификация хроматографическими методами должна дополняться химическими методами — препаративным выделением моносахаридов или их производных и их идентификацией. [c.66]

    Ранее упоминалось, что применение лишь хроматографических методов для анализа свободных сахаров в гидролизатах полисахаридов. недостаточно, необходимы препаративное выделение компонентов и их идентификация. То же относится и к анализу смесей метилированных сахаров. При препаративном разделении метилированных моносахаридов также пользуются хроматографическими методами, используя в качестве сорбентов целлюлозу, уголь и силикагель. Завершают очистку препаративной хроматографией на бумаге (картон, блоки из бумаги). [c.69]

    Полисахариды могут быть охарактеризованы с помощью таких методов, как гидролиз с последующей идентификацией образовавшихся моносахаридов или кислотный гидролиз полностью метилированных полисахаридов с последующим анализом продуктов гидролиза, имеющим целью определить местоположение связей. Применяют также целый ряд других методов. Один из них — использование очищенных ферментов для обнаружения специфических гликозидных связей и получения низкомолекулярных олигосахаридов с целью дальнейшего анализа. Многочисленные методы окисления используются для выявления числа последовательных неразветвленных звеньев первичной цепи. Идентификацию восстанавливающей концевой группы осуществляют, получая химическим путем те или иные производные. Однако, вероятно, самый полезный метод — это фрагментационный анализ . В основе этого метода лежит кислотный гидролиз, который не доводят до конца в результате такого гидролиза образуется ряд олигосахаридов, идентификация которых дает информацию о типе гликозидных связей (наличие ветвления и т. д.) в исходном полисахариде [40]. [c.168]

    Не следует ограничиваться хроматографическим анализом моносахаридов, поскольку можно элюировать октометилсахарозу из колонки длиной 1,8 лг за 60—70 мин при 200°. Однако метод представляет особую ценность для анализа олиго- и полисахаридов и для разделения и идентификации продуктов их метанолиза в качестве средства для характеристики и установления их строения. [c.550]

    Для выделенных метиловых эфиров сахаров можно определить степень метилирования и при помощи хроматографии осуществить их идентификацию со свидетелями известного строения. В ряде случаев метиловые эфиры можно идентифицировать по физико-химичеоким свойствам (температура плавления, ИК-спектры, рентгеноструктурный анализ, масс-опектрометрия). Возможно деметилирование полученного эфира треххлористым или трехбромистым бором и идентификация образовавшегося моносахарида. [c.82]

    Осн. направления исследований — анализ и идентификация орг. соед. Изучал многоосновиые орг, к-ты. Впервые получил паральдегид (1838), бензонитрил и сукцинимид (1844), Синтезировал (1844) бензойную к-ту гидролизом бензонит-рила. Предложил (1850) реактив для определения моносахаридов (реактив Фелинга), Изучал минеральные воды, дубильные в-ва, исследовал процесс хлебопечения. Редактор руководства Новый настольный химический словарь (с [c.451]

    Другой особенностью, которая отличает гликопротеины от остальных белков, является наличие в них углеводных остатков, которые мешают исследованию аминокислот, образующихся нри кислотном гидролизе. Эти вопросы обсуждаются в гл. 5 тома 1. Относительно трудно определять амидные группы в белках в присутствии гексозаминов, и особенно сиаловой кислоты этот вопрос обсуждается в гл. 6 тома 1. Взаимодействие между аминокислотами и восстанавливающими сахарами (см. том 1, гл. 4) приводит к частичному разрушению последних, создавая дополнительные трудности по сравнению с теми, которые встречаются при анализе высокоочищенных гетерополисахаридных комплексов. Однозначная идентификация углеводных компонентов при получении их кристаллических производных и другие соответствующие аспекты химии сахаров рассмотрены в гл. 7 тома 1. В гл. 8 обсуждаются различные условия при анализе углеводов гликопротеинов, обеспечивающие получение наиболее достоверных результатов. Методы, применяющиеся в настоящее время и включающие кислотный гидролиз с последующим определением моносахаридов, могут быть в дальнейшем усовершенствованы и улучшены. Необходимо, однако, признать, что для определения углеводных компонентов гликопротеинов необходимы новые методы. [c.294]

    Наиболее часто типичные гликопротеины млекопитающих содержат следующие моносахариды ь-фукозу (6-дезокси-ь-га-лактоза), о-маннозу, о-галактозу, Ы-ацетил-о-глюкозамин (2-ацетамид-2-дезокси-о-глюкоза) и сиаловые кислоты (различные производные нейраминовой кислоты). В состав некоторых гликопротеинов входят о-глюкоза или Ы-ацетил-о-галактозамин (2-ацетамид-2-дезокси-о-галактоза). Наилучшие результаты для разделения, идентификации и количественного определения этих семи моносахаридов достигаются с помощью газожидкостной хроматографии. Существует два основных метода модификации сахаров для последующего анализа газожидкостной хроматографией альдит-ацетатный и метил гл икозид-триметил сил ильный. Первый включает водный кислый гидролиз с последующим восстановлением образующихся альдоз до соответствующих аль-дитов и их ацетилирование второй основан на применении метанолиза, приводящего к образованию метилгликозидов и метиловых эфиров сиаловых кислот, которые затем превращаются в триметилсилильные производные. [c.318]


Смотреть страницы где упоминается термин Анализ и идентификация моносахаридов: [c.410]    [c.343]    [c.17]   
Смотреть главы в:

Химия углеводов -> Анализ и идентификация моносахаридов




ПОИСК





Смотрите так же термины и статьи:

Моносахариды



© 2025 chem21.info Реклама на сайте