Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моносахариды реакционная способность

    Реакции полуацетального гидроксила. Уже отмечалось, что моносахариды как в кристаллическом состоянии, так и в растворе в основном существуют в полуацетальных формах. Полуацетальный гидроксил отличается большей реакционной способностью и может замещаться другими группировками в реакциях со спиртами, карбоновыми кислотами, фенолами и т.д. [c.174]


    В самое последнее время для определения конфигурации и реакционной способности моносахаридов вое чаще привлекаются конформационные представления, связанные с рассмотрением тех геометрически различных форм, которые может принимать молекула, сохраняя нормальными длины ковалентных связей и размеры углов между ними. [c.50]

    Важным свойством моносахаридов является их способность к образованию гликозидов. Гликозиды обычно синтезируются за счет гидроксила у первого углеродного атома моносахаридов. Гидроксил у первого углеродного атома отличается повышенной реакционной способностью, и он получил название гли-козидного гидроксила. [c.108]

    Реакционная способность сахаров, участвующих в различных химических процессах переработки сульфитного щелока, не одинакова. Поэтому для создания научно обоснованной технологии следует знать причину такого их поведения. Моносахариды в сульфитном щелоке (как и в других растворах, если величина pH ниже 7) находятся в равновесии циклической и открытоцепной форм. Для структуры трех образующихся при гидролизе гемицеллюлоз мономеров — маннозы, глюкозы и ксилозы — характерен пиранозный цикл, для структуры двух других — арабинозы и галактозы — два цикла пиранозный и фуранозный. У арабинозы фуранозная форма достигает 70 % ее массы, у галактозы — около /з- [c.229]

    Доказательство строения моносахаридов является иллюстрацией их реакционной способности. Рассмотрим в этой связи пентозы и гек-созы. [c.157]

    Конформационные изомеры, которые могут быть приняты в расчет при рассмотрении структуры углеводов, относятся, очевидно, только к пиранозам. Для фуранозных структур, имеющих жесткий пятичленный цикл, существование заметно отличающихся конформаций невозможно. С другой стороны, открытые альдегидные формы моносахаридов могут существовать в виде большого числа конформационных изомеров, мало отличающихся один от другого энергетически, и анализ реакционной способности отдельных связей теряет в этом случае смысл. [c.50]

    Напротив, пиранозный цикл, подобно циклогексановому кольцу, способен существовать лишь в виде нескольких конформационных изомеров с различной устойчивостью, анализ которых может дать, так же как н анализ алициклических производных, ценные сведения о реакционной способности отдельных атомов и групп, а также о сравнительной устойчивости той или другой конфигурации. Поскольку пиранозная форма является той формой, в которой преимущественно находятся все моносахариды как в твердом состоянии, так и в растворе (стр. 48), то конформационный анализ этих форм. моносахаридов представляет как раз наибольший интерес. [c.50]


    Для некоторых моносахаридов с двумя незамещенными ОН-группами удалось наблюдать четкие различия в реакционной способности гидроксильных групп в зависимости от нх положения. Так, бензилирование а-метил-4,6-0-бензилиден-0-глюкопи-раиозида бензилбромидом в присутствии ТБАГС при эквимоль-ном соотношении реагентов приводит к 2,3-дибензильному производному с выходом 6%, 3-бензильному производному с выходом 20% и 2-бензильному призводному с выходом 54 7о, т. е. положение 3 активнее положения 2 [91]. [c.64]

    Так же, как и при получении простых эфиров, методы частичного ацетилирования мало разработаны, и для получения частично ацетилированных моносахаридов необходимо предварительно защищать соответствующие гидроксильные группы в исходном углеводе. Известно, правда, что гидроксильные группы моносахарида несколько отличаются по реакционной способности, и легкость ацетилирования для большинства [c.66]

    Следует отметить, что при использовании конформационных представлений для объяснения реакционной способности моносахаридов нужно обязательно исходить из характера рассматриваемого превращения. Для обратимых процессов результат определяется относительной выгодностью наиболее стабильных конформаций исходного вещества и конечных продуктов направление и скорость необратимых процессов зависят от стерических требований и величины свободной энергии переходного состояния. Последнее может в корне отличаться по своей конформации от наиболее стабильной конформации исходного вещества и возникать [c.45]

    Из различных производных моносахаридов по карбонильной группе наибольшее значение для синтетической химии углеводов имеют меркап-тали. Меньшее применение получили азотсодержащие производные сахаров по карбонильной группе, такие, как оксимы, гидразоны и т. д. Однако эти соединения представляют принципиальный интерес, поскольку именно в этих случаях проявляется двойственность реакционной способности моносахаридов. [c.112]

    Детальное исследование химии моносахаридов необходимо и с другой точки зрения. Моносахариды и их производные участвуют во многих жизненно важных биохимических процессах. Являясь первичными продуктами фотосинтеза, они могут претерпевать далее распад с освобождением химической энергии или служить исходными веществами при разнообразных биосинтетических превращениях. Детальное описание механизма этих процессов в терминах химии невозможна без получения исчерпывающих данных о реакционной способности моносахаридов. [c.626]

    Разработка этой проблемы может привести к должному успеху лишь при последовательном использовании подходов, принятых в теоретической органической химии. Для создания вполне современной химии сахаров, основанной на знании кинетики и механизма реакций, необходима кропотливая и трудоемкая работа по изучению количественных и полу количественных закономерностей реакционной способности моносахаридов и их важнейших производных. Трудность этой задачи очевидна. [c.628]

    Расширение и углубление знаний по общей химии моносахаридов создаст прочную базу и для развития синтетического направления в химии сахаров, причем собственно синтетические исследования и изучение реакционной способности, в сущности, представляют собой единый комплекс. В химии углеводов синтетические исследования заметно отличаются по направленности от аналогичных исследований в других областях органической химии. В частности, полный синтез моносахаридов и их производных почти не привлекал внимания исследователей. Как известно, основной задачей органического синтеза является подтверждение строения того или иного соединения и препаративное получение его для исследования различных свойств, особенно для изучения зависимости между строением и реакционной способностью или биологической активностью. Вследствие большой доступности простейших моносахаридов, в ряду углеводов эти цели проще всего достигаются частичным синтезом — получением нужного соединения, исходя из другого моносахарида. Таким образом, задачи синтетических работ в этой области сводятся к изысканию наиболее удобных последовательностей реакций, позволяющих производить требуемые структурные и стереохимические изменения в исходном моносахариде. Синтетическое направление органически срастается здесь с изучением реакционной способности функциональных групп в молекуле моносахарида. [c.629]

    Реакционная способность заместителей различна в зависимости от того, находятся ли они в экваториальном или в аксиальном положении. Поэтому определение конформации моносахарида конформационный анализ) имеет очень важное значение в химии углеводов. Ориентировочное определение конформации может быть осуществлено посредством оценки наиболее выгодного с энергетической точки зрения положения заместителей в "конку Гирующйх" конформациях молекула стремится принять такую конформацйюТ которой максимальной"число болёё"тяжелых заместителей находится в экваториальном положении (глюкоза поэтому реально существует только в конфо рмации, написанной слева). Зная из экспериментальных данных величину фактора неустойчивости каждого заместителя и учитывая наличие определенных неблагоприятных конфор-мационных факторов, например, так называемый А -эффект (размещение гликозидного гидроксила между циклическим кислородом и гидроксилом у второго углеродного атома, а следовательно, сближение трех кисло- [c.455]


    Однако центральной проблемой синтетической химии сахаров остается, несомненно, поиск избирательных реакций, позволяющих проводить нужные изменения структуры и стереохимии в заданном месте молекулы моносахарида без изменения других частей молекулы. Применение таких реакций открывает путь к получению более трудно доступных моносахаридов и их производных, исходя из нескольких наиболее доступных моносахаридов. Значительное число однотипных функциональных групп в молекулах моносахаридов, способность молекул к многообразным конформационным переходам и, главное, крайне тесная и весьма тонкая зависимость реакционной способности каждой из этих функциональных групп от их взаимного расположения, и особенно от стереохимических взаимоотношений, крайне затрудняет разрешение указанной проблемы. Это является [c.629]

    Введение кетогруппы в производные моносахаридов открывает богатейшие синтетические возможности, связанные с чрезвычайно многообразной реакционной способностью карбонильной группы. Основным путем получения таких кетонов служит окисление производных, содержащих одну вторичную гидроксильную группу. В сравнении с обычными спиртами вторично-спиртовые группы в сахарах поддаются окислению с некоторым трудом. Поэтому для этих целей приходится применять энергичные окислители, такие, как четырехокись рутения или комбинация диметилсульфоксида с реагентами типа ангидридов (уксусный ангидрид, РгО , дицикл огексилкарбодиимид и некоторые другие). Несмотря на некоторую экзотичность этих окислителей, их широко применяют в химии углеводов. Такие методы дают сейчас синтетику возможность окисления практически любой вто-рично-спиртовой группы и, следовательно, введения карбонильной функции в почти любое желаемое положение. [c.128]

    Рассмотрению углеводов мы посвятим две главы. В данной главе мы познакомим вас с классификацией, номенклатурой, структурой и реакционной способностью моносахаридов. В качестве примера мы будем чаще всего пользоваться глюкозой ( декстрозой ), поскольку она играет важную роль во многих биологических процессах, а большипство реакций, в которых она участвует, типично и для других моносахаридов. В начале следующей главы (гл. 26. Б) мы рассмотрим дисахариды, а затем перейдем к обсуждению углеводов с гораздо более сложной структурой. [c.420]

    При при,менеиии методов Пурди или Хеуорзса обычно (при наличии достаточного избытка метилирующего агента) происходит практически полное метилирование углевода. Избирательное метилирование ие удается осуществить, даже применяя рассчитанное количество метилирующего средства, так как различие в реакционной способности гидроксильных групп моносахаридов недостаточно сильно проявляется в жестких условиях реакции. [c.62]

    Довольно четко отличается своей повышенной реакционной способностью лишь гликозидный гидроксил, который метилируется первым, и при употреблении одного моля метилирующего средства в условиях метилирования могут быть получены соответствующие метилгликозиды. Имеются указания па то, что ранее других -в гексозах метилируются также гидроксильные группы у С (2) и С(0), однако такое поведение не является правилом и в сильной степени зависит от деталей структуры, конфигурации и конформации моносахарида. Отличие же реакционной способности указанных гидроксильных групп от реакционной способности других гидроксилов в молекуле столь невелико, что его не удалось еще использовать для разработки методов избирательного метилирования. [c.62]

    Сложным и еще далеким от разрешения является вопрос о сравнительной легкости образования бензилиденового производного в зависимости от взаимного положения гидроксилов в углеводе, т. е., другйми словами, вопрос о том, какого типа бензилиденовое производное образуется, если имеются несколько возможностей замыкания циклического ацеталя вследствие присутствия нескольких гидроксильных групп в моносахариде. На основании имеющегося, правда, не слишко.м обширного,. материала обычно считают, что по своей сравнительной реакционной способности в этом случае гликольные группировки могут быть расположены в следующий ряд цис-р-гликоль > транс-(3-гликоль > цис-а-гликоль > -гликоль. Однако эта закономерность никак не. может считаться строгой и в каждом отдельном случае структура бензилиденового производного нуждается в точном доказательстве, причем в данном случае вопрос еще более запутан, чем для изопропилиденовых производных. [c.84]

    Изложенные выше представления об относительной устойчивости различных конформаций моносахаридов в пиранозной форме в большинстве случаев хорошо согласуются с экспери.ментальными данными и позволяют объяснить наблюдаемую реакционную способность и физические свойства многих моносахаридов и их производных. Однако развитые Ривзом и вслед за ним другими авторами представления до некоторо  [c.41]

    Строение моносахаридов. Обычно моносахариды изображают с помощью проекций Фишера [19—21]. Нециклические формулы Фишера удобны при рассмотрении многих реакций моносахаридов. Однако, как известно [22—24], некоторые превращения, типичные для альдегидов и кетонов, для моносахаридов нехарактерны. Особенности реакционной способности альдегидной группы альдоз объяснил Толлеис [25], который предположил, что молекулы имеют циклическую структуру. Окончательные доказательства циклического строения были представлены Хеуорсом [26]. При переводе проекций Фишера в структуры Хеуорса порядок заместителей и конфигурация асимметрических центров ие меняются. [c.32]

    Сульфонилоксигруппы или любые другие хорошо уходящие группы, соответствующим образом располол<енные в молекуле моносахарида, подвергаются бимолекулярному нуклеофильному замещению ( N2) кислородсодерл<ащими нуклеофилами, такими как бензоат или ацетат, в биполярных апротонных растворителях (например, в Л/,Л -диметилформамиде) [42]. По месту замещения наблюдается обращение конфигурации (в случае хирального центра). Реакционная способность при таком замещении по механизму 5ы2 зависит от природы моносахарида и места замещения. Ричардсон [43] сформулировал правило, основанное на стерео-электронных факторах в переходном состоянии, с помощью которых мол<но предсказать относительную реакционную способность сульфонилоксигрупп, присоединенных к пиранозному циклу. [c.141]

    При растворении моносахаридов в воде наблюдается явление мутаротации — изменение удельного вращения Алкилированием глюкозы диметилсульфатом было доказано наличие в ней пяти гидроксильных групп, как это следует из открытой формы, а в реакцию алкилирования глюкозы спиртом в присутствии сухого хлористого водорода вовлекается только один из имеющихся в молекуле гидроксилов (с образованием алкилглюкозидов), то есть только одна из пяти гидроксильных групп обладает повышенной реакционной способностью [c.758]

    По степени перехода в открытоцепную форму моносахариды располагаются в следующий ряд арабиноза>ксилоза>ман-ноза>галактоза>глюкоза. Разное поведение нентоз и гексоз объясняется общей закономерностью чем меньше число углеродных атомов в молекуле, тем выше реакционная способность карбонильного соединения. Различный же переход в открытоцепную форму моносахаридов с одинаковым числом углеродных атомов в молекуле вызван влиянием стереофактора. Это можно отчетливо увидеть из представленных формул. [c.230]

    Ни один из сахаров полностью не реагирует с ионами гидросульфита. При равном массовом содержании и pH степень связывания определяется описанным в 7.4.3 рядом реакционной способности открытоцепных форм моносахаридов по карбонильной группе. Однако для всех образующихся сахарогидросульфитных соединений имеются зоны максимальной стабильности, определяемые величиной pH раствора. Как видно из рис. 8.1, с повышением реакционной способности сахара по карбонильной группе не только возрастает степень его связывания с ионами гидросульфита, но и расширяется эта зона. Так, степень связывания глюкозы лишь в довольно узкой зоне pH 4,5— 5,5 приближается к 40%, а ксилозы — в зоне pH 3,5—6,5 достигает 70 % (не показанные на рисунке кривые маннозы и галактозы занимают промежуточные положения, кривая арабинозы не представлена в связи с незначительным содержанием этого трудно биохимически утилизируемого сахара). Соответственно при pH 4,5 /(дне ксилозогидросульфитного соединения равна 6-10 против 3-10-2 у такого же соединения глюкозы, т. е. первое соединение на порядок стабильнее второго. Поэтому условия подготовки сульфитного щелока, обеспечивающие освобождение гексоз из связанной формы и качественное проведение спиртового брожения, могут оказаться недостаточными для пентоз и для процессов биосинтеза белка. [c.245]

    Различная стабильность сахарогидросульфитных соединений находит свое проявление также в том, что при наличии в растворе смеси сахаров их взаимодействие с гидросильфитом протекает ПС одповременпо, а строго последовательно. Первым вступает в реакцию моносахарид, обладающий наибольшей реакционной способностью по карбонильной группе. Таким обра- [c.246]

    Моносахариды — низкомолекулярные соединения, и этот раздел химии углеводов является, в сущности, одним из разделов органической химии полифункциональных соединений. Его наиболее характерной чертой является решающее влияние стереохимических различий на реакционную способность, переплетающеес51 стаутомерными отношениями, которые характерны не только для самих моносахаридов, но и для их многочисленных производных. Для установления строения моносахаридов и их производных, как и других органических соединений, помимо химических применяются и физико-химические методы, хотя последние приобрели серьезное значение в химии моносахаридов лишь в самое недавнее время. Синтетическая химия моносахаридов располагает сейчас большим числом разнообразных методов, позволяющих контролировать не только структуру, но и конфигурацию получаемого соединения. Следует только иметь в виду, что полный синтез моносахаридов не привлекал сколько-нибудь серьезного внимания со стороны исследователей, поскольку синтетические методы химии моносахаридов сводятся главным образом к взаимным переходам различных моносахаридов и их производных друг в друга. [c.9]

    Неспособность моносахаридов вступать в некоторые реакции, характерные для альдегидной группы, можно отнести за счет того, что последняя в свободном виде в моносахариде отсутствует. Гидроксильная группа у 1 (в кетозах — у С2) в циклической форме находится в особом положении единственная из всех гидроксильных групп она соединена с углеродным атомом, при котором имеется другой кислородный заместитель, и представляет собой гидроксильную группу полуацеталя. Углеродный атом, с которым связан полуацетальный гидроксил (иначе называемый гликозидным гидроксилом), получил название гликозидного (или ано-мерного) центра. Высокая реакционная способность полуацетального гидроксила объясняется, с современной точки зрения, стабилизацией образующегося при его отщеплении карбониевого иона за счет свободной пары электронов соседнего кислородного атома (см. гл. 6). Аналогия между реакцией образования ацеталей из альдегидов и метилгликозидов из моносахаридов становится совершенно очевидной, если принять для моносахаридов лактольную формулу  [c.26]

    Гидроксильная группа —одна из тех функциональных групп, химические превращения которой особенно разнообразны. Для углеводов, являющихся полигидроксильными соединениями, известны практически все превращения и все типы производных, присущие другим гидроксилсодержащим соединениям. Однако сочетание большого числа гидроксильных групп с карбонильной функцией в молекуле моносахарида накладывает на свойства гидроксилов определенную сп ци )ику. Так, гидроксильные группы моносахарихов более кислые и образуют алкоголяты (сахараты) не только с щелочными металлами и их гидроокисями, но и с гидроокисями щелочноземельных металлов. Моносахариды алкилируются и ацили-руются легче, чем обычные спирты. Главная же особенность гидроксильных групп моносахаридов состоит в том, что их реакционная способность сильно зависит от стереохимии молекулы в целом. [c.132]

    Методы частичного или избирательного ацетилирования свободных моносахаридов практически не разработаны, хотя гидроксильные группы в этих соединениях несколько отличаются по реакционной способности. Наиболее легко ацетилируются первнчноспиртовая группа и гидроксиль-ляя гпуппа ппи С.,. Так, например, при осторожном ацетилировании [c.134]

    Спиртовые гидроксилы аминосахаров по реакционной способности практически не отличаются от гидроксильных групп обычных моносахаридов и гладко образуют простые и сложные эфиры, изопропилиденовые и бензилиденовые производные, основные методы получения которых подробно рассмотрены в гл. 5. При получении О-производных аминосахаров во избежание осложнений, связанных с наличием аминогруппы, последнюю обычно защищают введением подходящего заместителя чаще всего для этой цели используют ацетильную группу. В качестве примера можно привести синтез мурамовой кислоты VI. Исходным соединением в этом синтезе является Ы-ацетил-а-бензил-О-глюкозаминид, который переводят в 4,6-О-бензилиденовое производное XV. При конденсации бензилиденового производного XV с -хлорпропионовой кислотой реагирует только незамещенная гидроксильная группа при Сд. После снятия защищающих группировок осторожным кислотным гидролизом и гидрогенолизом с высоким выходом образуется N-aцeтилмypaмoвaя кислота XVI, которую переводят в мурамовую кислоту продолжительным гидролизом соляной кислотой  [c.273]

    Обычно возможен синтез нескЬльких производных определенного моносахарида, содержащих один и тот же свободный гидроксил. При выборе наиболее подходящего производного необходимо руководствоваться не только соображениями удобства синтеза и пригодности применяемых защищающих групп. Не менее существенно, что реакционная способность гидроксильной группы в условиях гликозилирования весьма сильно зависит от способа защиты остальных гидроксилов, что определяет конформацию молекулы в целом, хотя закономерности такого влияния еще далеко не всегда ясны. [c.464]

    Шестичленные гетероциклы с атомом кислорода — а-пиран и у-пиран — не относятся к ароматическим соединениям, так как в каждом из них имеется атом углерода в состоянии л/ -гибридизации и поэтому отсутствует единая сопряженная система р-электронов двойных связей и атома кислорода. Эти соединения представляют собой ненасыщенные циклические эфиры, обладающие высокой реакционной способностью, вследствие чего они неустойчивы, а а-пиран вообще в свободном виде неизвестен. Стабильными являются производные пиранов, в частноеги тетрагидропиран и его гидрокси-производные, относящиеся к классу моносахаридов (см. 15.1). [c.370]

    Возможность более широкого использования химических методов для исследования структуры моносахаридов и развитие новых интересных подходов целиком определяются достижениями химии моносахаридов в целом. Центральной проблемой здесь является детальное изучение реак- ционной способности отдельных функциональных групп в молекуле моносахарида и влияния на нее особенностей структуры. Речь идет об исследовании реакционной способности карбонильной группы, гликозидного гидроксила и спиртовых групп и влияния на реакционную способность различных изменений в строении молекулы (замещение соседних групп, изменение стереохимии тех или иных асимметрических центров и конформации всей молекулы в целом и т. д.). Подобных работ в химии сахаров пока явно недостаточно. По-видимому, наиболее разработанными примерами такого рода являются исследования механизма окисления альдоз бромом и реакций замещения у гликозидного центра. Эти исследования не только позволили сделать важные теоретические выводы, но и способствовали разработке новых синтетических методов. Между тем аналогичные работы по реакционной способности спиртовых групп моносахарида, аминогрупп в аминосахарах, карбоксильных групп в уроновых кислотах почти отсутствуют, и все заключения здесь носят обычно качественный характер, как, например, суждения о различиях в реакционной способности первичных и вторичных гидроксильных групп моносахарида. [c.628]

    К числу вопросов, решение которых необходимо для успешного развития исследований в этом направлении, следует, по-видимому, отнести количественную оценку состояния таутомерного и конформационного равновесия моносахаридов и их производных в зависимости от внешних факторов (растворители, температура, pH и т. п.) количественное или полу-количественьое измерение реакционной способности гидроксильных групп в зависимости от положения в углеродной цепи моносахарида и конформационной характеристики более подробный конформационный анализ ациклических форм моносахаридов измерение термодинамических параметров важнейших типов производных моносахаридов, позволяющее предсказывать состояние равновесия в обратимых реакциях, и т. п. Обобщение всех этих результатов с использованием современных электронных представлений и конформационного анализа позволило бы создать ряд полуколпчественных концепций о связи структуры и реакционной способности моносахарида в различных экспериментальных условиях, что дало бы возможность делать более точный выбор оптимальных условий реакции или целесообразного синтетического пути. [c.628]

    О-Ацильные производные моносахаридов. При замещении атомов водорода гидроксильных групп углеводов остатками кислот получаются вещества типа сложных эфиров. Особое значение в процессах метаболизма в организме имеют моно- и дифосфорнокислые эфиры моносахаридов как промежуточные метаболиты катаболизма, биосинтеза и взаимопревращения углеводов. При образовании фосфорных эфиров (донор фосфорильной группы АТФ) резко возрастает реакционная способность моносахаридов, их биохимическая активность. [c.230]

    Цепные формулы моносахаридов, несмотря на их большую наглядность, ие полностью отражают свойства углеводов, например не раскрывают воз-иожиссть присоединения ЫаНЗОз или КНз, что типично для альдегидов и кетонов. Немецкий химик Б. Толленс (1883 г.) предложил трактовку реакционной способности углеводов, согласно которой между альдегидной (кетон-ной) группой н одним из гидроксилов внутри молекулы сахарида протекает взаимодействие с образованием цикла (циклические формулы см. выше). Наибольшей устойчивостью обладают пяти- и шестнчленные циклы. [c.506]

    Уже давно было обращено внимание на то, что in vitro (лат.—в стекле) сахара обладают значительной стойкостью, тогда как в организмах—in vivo-(лат.—в живом) чрезвычайно быстро идут как процессы расщепления моносахаридов (брожение, окисление), так и синтетические процессы (например, образование крахмала, гликогена). Когда Э. Фишер получил 7-метилглюкозид и оказалось, что он гидролизуется разбавленными кислотами почти в 100 раз-быстрее, чем обычные а- и р-глюкозиды, возникла идея, что в организмах глюкоза при нормальных условиях переходит в особую активную форму. Такую-неизвестную активную форму стали называть у-сахаром, не связывая сначала с этим названием какого-либо представления о структуре. В дальнейшем, когд у 7-глюкозидов было доказано наличие пятичленного кольца, у-сахарами стали называть фуранозы. Однако впоследствии оказалось, что наибольшей реакционной способностью обладают не фуранозы, а оксо-формы. Кроме того, было обнаружено, что при углеводном обмене в организмах простые сахара, прежде-чем расщепиться, как правило, превращаются в фосфорнокислые эфиры (см. стр. 662). [c.639]

    На первых этапах изучения углеводов альдегидные и кетонные формы строения моносахаридов хорошо согласовывались со многими реакциями этих веществ, но в дальнейшем было установлено, что некоторые реакции моносахаридов нельзя объяснить такими формулами их строения. Было показано, например, что альдогексозы не обнаруживают некоторых альдегидных реакций (не дают реакции с фуксинсернистой кислотой, не образуют бисульфитного соединения с МаНЗОз и т. д.). Далее оказалось, что из пяти спиртовых гидроксилов глюкозы один обладает значительно большей реакционной способностью, чем остальные, и за счет его наиболее легко образуются глюкози-ды. При стоянии свежеприготовленных растворов моносахаридов их удельное вращение изменяется. [c.103]

    Легкость взаимных превращений моносахаридов в щелочной среде объясняется тем, что, как б(яло показано изучением поглощения в ультрафиолетовом свете и другими исследованиями, в этих условиях значительно повышается содержание в растворе оксоформы (формы со свободной карбонильной группой ), отличающейся наиболее высокой реакционной способностью, Оксоформы моноз в щелочной среДе в свою очередь легко превращаются в енольную форму  [c.347]


Смотреть страницы где упоминается термин Моносахариды реакционная способность: [c.66]    [c.70]    [c.332]    [c.258]    [c.428]    [c.626]    [c.222]    [c.54]   
Химия справочное руководство (1975) -- [ c.270 , c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Моносахариды



© 2025 chem21.info Реклама на сайте