Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение компонентов белковых цепей

    При электрофорезе в полиакриламидном геле заряд белков не играет решающей роли в определении подвижности данной макромолекулы — особенно при электрофоретическом разделении кислых белков, обычно диспергированных в 0,1%-ном растворе додецилсульфата натрия. В этих условиях основные группы белка образуют комплексы с додецилсульфатом натрия и благодаря этому белки, подобно нуклеиновым кислотам, ведут себя главным образом как полианионы. Разделение в этом случае происходит в основном за счет различий в молекулярных весах, причем более мелкие компоненты движутся впереди более крупных. Путем стандартизации таких гелей с помощью белков или нуклеиновых кислот известного молекулярного веса можно с достаточной точностью определить молекулярный вес неизвестных компонентов [435]. Следует особо отметить, что если исследуемый белок состоит из двух или большего числа цепей, связанных друг с другом дисульфидными связями, и если разделение при этом проводят, как обычно, в присутствии сильных денатурирующих и восстанавливающих агентов, то полученные данные относятся к молекулярным весам структурных субъединиц или даже пептидных цепей. [c.62]


    Фотохимические реакции фотосинтеза. Общие представления о фотосистемах. Фотохимический этап фотосинтеза включает в себя ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и транспорта электронов, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают реакционный центр, в котором протекают очень быстрые реакции первичного разделения зарядов комплекс компонентов, передающих электрон от реакционного центра (электрон-транспортная цепь) комплекс компонентов, осуществляющих работу по фотоокислению воды и восстановлению реакционного центра. [c.420]

    Важным результатом, полученным при изучении электрофореза растворов белков, было открытие того, что многие белки, которые являются чистыми по другим критериям, в действительности состоят из нескольких видов молекул. Ярким примером этого может служить яичный альбумин (рис. 125). Этот белок кристалличен (поэтому свойственно предположить, что все молекулы являются почти абсолютно идентичными) и показывает однородность в ультрацентрифуге (отсюда следует, что все молекулы имеют один и тот л<е молекулярный вес и коэффициент трения). Этот белок также показывает однородность в экспериментах по электрофорезу при различных условиях, таких, какие использовал Лонгворс, чтобы получить данные, представленные на рис. 123 (см. также рис. 125, верхнюю диаграмму). Однако если используется поле большой напряженности и эксперимент проводится очень длительно, то появляются благоприятные условия для разделения компонентов с почти одинаковыми подвижностями. При данных условиях, как показывает рис. 125, было найдено, что чистый белок состоит из трех отдельных компонентов. Предполагают , что эти три компонента являются идентичными во всех отношениях, кроме количества фосфата, которое они содержат, причем в них могло быть два, один и ни одного фосфатного иона соответственно. Фосфат связан с белком через гидроксильную группу в боковой цепи, и каждая фосфатная группа, [c.489]

    В этом примере показано, как можно с помощью ГПХ разделить по молекулярной массе продукты бромиианового гидролиза тяжелых цепей Н-2 (рис. 8,Л ом. гл. 10). На рис. 8,5 представлены результаты калибровки колонки стандартами с известной молекулярной массой при линейном градиенте элюции. Как видно, данная колонка лучше всего пригодна для разделения низкомолекулярных компонентов (с мол. массой менее 25 000—30000). Имеются, однако, колонки, которые больше подходят для разделения высокомолекулярных белков. Как и в предыдущем примере, для дальнейшей очистки отдельных пептидов можно провести повторную хроматографию на той же колонке. [c.117]


    Основными достижениями современной обращенно-фазовой ВЭЖХ как метода разделения белков является разработка неподвижных фаз с большим размером пор (больше 10 нм). Эти фазы обладают большой селективностью и обеспечивают большой выход продукта. Отличные хроматограммы получены на неподвижной фазе на основе силикагеля с порами размером 33 нм. На этих колонках были разделены такие высокомолекулярные белки, как коллаген, сывороточный альбумин, овальбумин, цепи фибриногена, молекулярная масса большинства соединений составляла от 40 до 300 kDa. Выход белкового компонента достигал 85%. [c.57]

    Глицериды и соли жирных кислот составляют основную часть относительно нерастворимых органических веществ в сточных водах. Основными компонентами жирнокислотной фракции являются насыщенные и ненасыщенные жирные кислоты с длинной цепью — лауриновая, миристиновая, пальмитиновая, стеариновая, олеиновая и линолевая [88, 89]. Значительную часть нерастворимых органических загрязнений составляют липидоподобные вещества, в том числе стерины и углеводороды. Липиды и липидоподобные вещества нерастворимы в воде и труднее разлагаются при обработке сточных вод, чем углеводы и белки. Поэтому значительные количества липидов минуют водоочистные сооружения и вносят заметный вклад в состав органических загрязнений поверхностных вод. Имеются весьма скудные сведения о превращениях относительно малорастворимых органических веществ (таких как липиды и липидоподобные вещества или жиры ), которые попадают в поверхностные воды частично из городских и промышленных стоков. Для лучшего понимания процессов разложения липидов и путей их удаления в установках для обработки сточных вод и природной воды нужно иметь аналитические методы для разделения липидов на классы и идентификации отдельных соединений в загрязненной воде. Такой подход отличается от обычного взгляда на липиды как на один широкий класс, включающий жиры, воска, масла и любые другие нелетучие вещества, экстрагируемые гексаном из подкисленной пробы канализационных или промышленных сточных вод [74]. [c.410]

    Когда два белка находятся в растворе при pH, лежащем между их изоэлектрическими точками, один компонент несет положительный, а другой — отрицательный заряды и таким образом они стремятся осадить друг друга. Уже давно было признано, что это явление налагает ограничения на любой метод фракционирования белков. Были разработаны специальные методы, использующие такие взаимодействия для выделения группы белков из сложных смесей. Эти группы могут быть подвергнуты дальнейшему разделению путем повторного фракционирования с использованием э.тектролитов большей ионной силы или в присутствии биполярных ионов, т. е. в условиях, при которых взаимодействия между макромолекулами растворенного вещества сводятся к минимуму [197]. В другом методе разделения белков в межизоэлектрической области используется синтетическая полимерная кислота, которая вытесняет анионные компоненты из комплекса с катионным белком [198, 199]. Соотношение между растворимостями в системе, содержащей полимерную кислоту и белок ниже их изоэлектрической точк11, иллюстрируется на примере системы иолимета-криловая кислота — альбумин бычьей сыворотки (рис. 18). Следует отметить, что избыток полимерной кислоты приводит к повторному растворению осадка, появление которого указывает на образование отрицательно заряженных комплексов. Кривые растворимости не зависят от длины цепи [c.82]

    Таким образом, существующий экспериментальный материал свидетельствует о несостоятельности традиционного представления о пространственном строении глобулярных белков как о наборе регулярных структур. Подобное представление, возникшее в начальный период структурных исследований белков (1930—1950-е годы), оказалось справедливым лишь по отношению к регулярным компонентам фибриллярных белков и ограниченной группе глобулярных белков. Большая часть белковых молекул существенно иррегулярна. Поэтому столь распространенное разделение пространственного строения белка на вторичные и третичную структуры, предложенное в 1952 г. Линдерстрем-Лангом [3], или на вторичные, супервторичные, доменные и третичные структуры, предложенное в 1979 г. Шульцем и Ширмером [157], строго говоря, лишено общности, что делает бесплодным поиск простых эмпирических корреляций между регулярными формами основной цепи и аминокислотной последовательностью. [c.329]

    Липиды — это амфифильные соединения они образуют мицеллы, если содержат по одной жирнокислотной цепи, и двойные слои или бислойные пузырьки, если таких цепей две. Свойства и состав двух поверхностей бислоя не обязательно одинаковы. Природные мембраны помимо липидов содержат большое количество белков. Периферические белки легко экстрагируются из мембраны, в то время как интегральные мембранные белки прочно связаны с ней, вероятно, с помощью гидрофобного участка пептидной цепи. Некоторые интегральные цепи локализуются только на одной поверхности мембраны, другие пронизывают ее насквозь. В липидных бислоях происходят фазовые переходы между состояниями, которые условно можно считать твердым и жидким. В природных мембранах тоже наблюдаются аналогичные переходы, а также латеральное фазовое разделение. От других биологических тpyктyi) мембраны отличает то, что они являются динамическими системами. В них происходит довольно быстрое латеральное перемещение белков и липидов и вращение различных компонентов. Однако перескок компонентов с одной поверхности на другую происходит весьма редко. [c.235]


    Иммуноэлектрофорез считается незаменимым методом для качесшенного анализа смесей антигенов, например, сывороток. С помощью данного метода можно идентифицировать до 20 компонентов смеси. Удается исследовать и аномалии индивидуальных белков, поскольку на стадии разделения обнаруживаются нарушения электрофоретической подвижности (налример, гомогенность р1 миеломных белков), существенные ютклонения от нормальной концентрации (определяемые по интенсивности дуг преципитации) и изменения субъединично-го состава (например, искажение соотношения легких цепей к и Я. у миеломных белков). Такие тонкие изменения трудно обнаружить с помощью простой диффузии 1в геле. Осторожно подбирая агарный/агарозный носитель, состав буфера и его pH, можно исследовать молекулы с самыми различными зарядами. Применимость данного метода, ак и всех других, основанных на реакции преципитации, ограничена определением только таких молекул, концентрация которых в растворе не менее или равна 5 мкг/мл, а размеры не препятствуют образованию преципитатов. [c.222]


Смотреть страницы где упоминается термин Разделение компонентов белковых цепей: [c.69]    [c.217]    [c.264]    [c.279]    [c.132]    [c.420]    [c.102]    [c.521]    [c.441]   
Успехи органической химии Том 1 (1963) -- [ c.170 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Белки разделение

Разделение компонентов



© 2025 chem21.info Реклама на сайте