Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединени разделение

    В химической и нефтехимической промышленности эти методы могут использоваться для разделения углеводородов, смещения равновесия химических реакций путем удаления одного из ее продуктов, разделения азеотропных смесей, концентрирования растворов, очистки или отделения высокомолекулярных соединений из растворов, содержащих низкомолекулярные компоненты и т. п. в биологии и медицине — для выделения и очистки биологически активных веществ, вакцин, ферментов и т. п. в пищевой промышленности — для концентрирования фруктовых и овощных соков, молока и молочных продуктов, получения высококачественного сахара и т. п. [c.7]


    Рассмотрены основные направления химических превращений высокомолекулярных соединений нефтей и возможные пути пх химической переработки в продукты народнохозяйственного значения. Дана краткая характеристика важнейших современных методов разделения, исследования и анализа высокомолекулярных соединений нефти. [c.2]

    Структура и содержание второго издания книги претерпели существенные изменения. Главы II (Методы разделения высокомолекулярных соединений нефти) и X (Физические свойства смол и асфальтенов) совсем исключены, так как за последние годы появились специальные издания, в которых подробно описаны методы разделения, выделения и характеристики соединений, близких по свойствам к высокомолекулярной части нефти. Значительно дополнены новым материалом главы, посвященные углеводородам и асфальтенам. Радикально переработана глава о сераорганических соединениях, в которую вошло большое количество новых данных по избирательному каталитическому гидрированию сераорганических соединений нефти. Остальные главы книги мало изменились по сравнению с первым изданием, хотя и в них внесены некоторые дополнения и редакционные изменения. Заново написаны введение и [c.3]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Большое значение имеют сорбенты на основе пористого стекла с привитыми углеводами. Они сочетают гидрофильный характер поверхности с высокой механической прочностью и предназначаются для разделения методом гель-хроматографии смесей высокомолекулярных соединений в водных растворах. [c.231]


    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    Нерастворимыми в указанных выше углеводородах могут быть как относительно высокомолекулярные соединения, обладающие высокой степенью ароматичности, так и сравнительно низкомолекулярные вещества, имеющие поляр 1ые функциональные группы. Такое явление наблюдалось при разделении асфальтенов на гель-хроматографе и экстракции большие набором растворителей разной полярности. Кроме того, определение средней молекулярной массы асфальтенов сильно осложняется большой склонностью молекул асфальтенов к ассоциации, поэтому молекулярная масса одних и тех же асфальтенов, но определенная разными методами, молсет различаться иа несколько порядков. [c.210]

    В случае смесей смол и высокомолекулярных углеводородов -Методы разделения могут основываться и на различной реакцион- ной способности. Иначе говоря, наряду с чисто физическими методами, в этом случае могут быть использованы н химические методы разделения этих сложных смесей нефтяных компонентов. Разработка методов, позволяющих четко разделить асфальтены от смол и смолы от углеводородов, является одной из актуальнейших и трудных задач в химии высокомолекулярных соединений нефти. [c.42]

    Попытаемся рассмотреть научные и практические вопросы раздельного исследования состава, строения, свойств и использования высокомолекулярных соединений нефти. Прп этом надо помнить, что разделение — одна пз важнейших п неотъемлемых частей этих исследований [22]. [c.260]

    Отделение твердых углеводородов (кристаллических или микрокристаллических) этого класса от остальных высокомолекулярных соединений нефти практически вполне осуществимо. Для дальнейшей же дифференциации самих твердых парафинов требуется разработка более совершенных и тонких методов разделения. [c.25]

    Таким образом, разделение высокомолекулярных соединений нефти даже наиболее простого по составу и строению класса, каким являются парафины, весьма затруднено. [c.26]

    Адсорбционная хроматография в настоящее время является одной из основных составных частей всех комплексных методик по исследованию химического состава нефтей, начиная с самых легких, газобензиновых частей и кончая смолами. Она почти незаменима при выделении из нефти без воздействия высоких температур высокомолекулярных соединений и нри дальнейшем разделении их на группы, более близкие по химической природе. [c.116]

    В 1957 г. появилось весьма обстоятельное исследование высокомолекулярных нефтяных кислот, выделенных из фракции дистиллятного смазочного масла венесуэльской нефти [47 I. Автор применил большой комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные им данные и сделанные на их основе выводы доказательны. Кислоты для исследования были получены в результате перегонки широкой фракции смазочного масла из венесуэльской нефти над едким натром. Остаток от перегонки состоял из приблизительно равных количеств натриевых солей карбоновых кислот и углеводородов. При обработке щелочного остатка разбавленной серной кислотой были выделены свободные карбоновые кислоты. Смесь этих кислот и углеводородов растворяли в бензоле и раствор фильтровали [c.320]

    Основное назначение гель-хроматографии-разделение смесей высокомолекулярных соединений по размеру молекул или молекулярной [c.53]

    МЕТОДЫ РАЗДЕЛЕНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ НЕФТИ [c.25]

    В настоящее время как у нас, так и за рубежом для разделения сырых смесей СЖК и СЖС наиболее широко применяется перегонка в кубах под вакуумом. Однако, как показывает практика, простая перегонка не обеспечивает достаточную четкость разделения. К тому же при длительном нагревании в кубах высокомолекулярные соединения (особенно это относится к СЖК) в значительной мере разлагаются. Поэтому разработка более совершенного способа разделения, к которому относится непрерывная [c.5]

    Процесс растворения высокомолекулярных соединений связан со стадией набухания и увеличением их массы и объема за счет диффузии молекул растворителя в пространственный каркас высокомолекулярного соединения и его растяжения благодаря гибкости и эластичности звеньев. При этом происходит непрерывное взаимодействие макромолекул высокомолекулярного вещества и молекул растворителя. Если силы этих взаимодействий оказываются больше сил сцепления макромолекул, происходит разделение макромолекул и образование раствора высокомолекулярного соединения. [c.29]


    Перечисленные способы существенно облегчают улавливание продуктов разделения и позволяют довести потери собираемых веществ до минимума. Выбор того или иного способа или же их сочетаний зависит от конкретных условий и прежде всего от летучести улавливаемых веществ. Летучие, низкокипящие соединения требуют более тщательного охлаждения ловушек. Однако такие вещества реже образуют туманы. Наоборот, высокомолекулярные соединения могут быть сконденсированы при более высоких температурах, но они склонны легко образовывать туманы. [c.207]

    Мягкие гели. Гели этого типа являются органическими высокомолекулярными соединениями, обладающими незначительным числом поперечных связей. Они способны поглощать большие количества растворителя, набухая и увеличивая при этом собственный объем. Их пористость возрастает пропорционально объему поглощенного растворителя. Как следствие этого емкость мягких гелей снижается, а сам гель подвергается деформации. Поэтому мягкие гели, как правило, применяются для разделения смесей низкомолекулярных вешеств и при малых скоростях потока. Более широкое применение они нашли в тонкослойной хроматографии. [c.230]

    Основное назначение гель-хроматографии — разделение смесей высокомолекулярных соединений и определение молекулярномассового распределения полимеров. [c.233]

    Следует помнить, что в существенной степени поглощаются ионитом только те ионы, которые могут проникать в поры матрицы смолы. Используя это свойство, можно проводить разделение ионов низко- и высокомолекулярных соединений высокомолекулярные проходят через колонку, низкомолекулярные задерживаются в ней. Аналогично можно использовать различие скоростей обмена. [c.251]

    Оба типа максимумов мож.но подавить добавлением небольших количеств поверхностно-активных веществ, таких, как желатин, крах,мал и др. Аналогичное действие оказывают многие другие высокомолекулярные соединения. Например, уксус, получаемый при брожении, дает две волны восстановления кислорода (/ и 2, кривая б рис. Д.100), а синтетический уксус кривая а — только один ярко выраженный максимум в области 1-й волны. Это можно использовать для их разделения. [c.292]

    Для фракционирования применяют также способ постепенного понижения температуры при постоянном составе жидкости. Препаративное разделение высокомолекулярных соединений широко применяется при научных исследованиях для характеристики полидисперсности полимеров. [c.383]

    Следует отметить, что в последнее время ультрацентрифуги начинают использоваться не только для определения численного или молекулярного веса дисперсных систем, но и для чисто препаративных целей, например, для разделения смесей высокомолекулярных соединений в растворах на отдельные, фракции, отличающиеся размером молекул. [c.80]

    В данном разделе рассматривается установка для концентрирования растворов высокомолекулярных соединений (ВМС) с применением ультрафильтрации. Концентрирование растворов ВМС путем выпаривания обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов). Применение ультрафильтрацпи позволяет довести концентрацию ВМС до уровня, при котором возможно непосредственное использование раствора в технологическом процессе или извлечение из него ВМС другими методами разделения. [c.201]

    Нефтяные кислоты, выделенные из фракции дистиллятного смазочного масла венесуэльской нефти, исследованы Д. Кнотнеру-сом. Им использован комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные данные и сделанные на их основе выводы достаточно достоверны [19, с. 322]. Установлено, что высшие нефтяные кислоты являются карбоновыми, карбоксильная группа которых соединена с углеводородными радикалами, аналогичными (по составу и строению) радикалам в углеводородах тех нефтей, нз которых кислоты выделены. В молекулах кислот содержатся циклопарафиновые, моноароматические, диароматические и серосодержащие углеводородные радикалы. Полиароматические карбоновые кислоты, в молекулах которых содержится более двух бензольных колец, в нефтях пока не обнаружены. [c.37]

    Никель появляется во фракциях с температурой кипения около 300° и его распределение подчиняется тем же закономерностям, что и распределение железа [786, 959]. Кобальт при перегонке нефти целиком концентрируется в остатке (500°) [786, 880]. При разделении нефти на компоненты кобальт полностью попадает в асфальтены, главным образом в их высокомолекулярную часть (4000— 8000 и 8000—22 000 по данным гель-хроматографии) [76]. Видимо, он связан в комплексы с тетрадентатными лигандами. Распределение железа и никеля по молекулярно-весовым фракциям носит бимодальный характер. Природа низкомолекулярных соединений никеля достаточно изучена они представлены комплексами с порфиринами. При возрастании молекулярной массы фракции растет доля непорфириновых соединений никеля. По своей природе они, по-видимому, аналогичны непорфириновым соединениям ванадия [8, 76]. Для высокомолекулярных соединений железа также справедливо то, что сказано о непорфириновом ванадии. Природа низкомолекулярных соединений железа в нефти до сих пор не ясна. Наличие нафтенатов железа исключается [926, 927, 973], но допускается возможность существования железо-порфириновых комплексов, аналогичных найденным в сланцах [390, 794, 798]. Предполагается также существование кобальт-порфиринов в концентрациях ниже предела обнаружения. Это может объяснить присутствие небольшого количества кобальта в низкомолекулярных фракциях смол и асфальтенов (300—1000) [76]. [c.179]

    А. А. Петров с сотрудниками [23, 24] разработали методику выделения асфальтенов и экстракционного разделения нефти на фракции, применяя растворители с различнбй полярностью. Экспериментально они установили, что основными эмульгаторами и стабилизаторами эмульсий В/Н являются высокомолекулярные соединения нефти (асфальтены, смолы и высокоплавкие парафины) и высокодиспергированные твердые минеральные и углистые частицы. [c.24]

    Гиперфильтрация и у л ь т р а ф и л ь т р а ц и я — методы разделения растворов фильтрованием через пористые мембраны. При гиперфильтрации мембраны имеют поры размером около С,i нм и пропускают молекулы воды, но непроницаемы (или полупроницаемы) для гидратированных ионов солей или недиссоцинро-ваиных молекул. Ультрафильтрация — разделение растворов, содержащих высокомолекулярные соединения, мембранами, поры которых имеют диаметр около 5—200 нм. Для гиперфильтрации применяются ацетатцеллюлозные, полиамидные и другие полимерные мембраны. При фильтровании давление фильтрации должно превышать осмотическое при гиперфильтрации солевых растворов рабочее давление составляет 5—10 МПа при концентрации солей 20—30 г/дм1 [c.247]

    Силикагели — неорганические высокомолекулярные соединения переменного состава, молекулы которых содержат кремнекислородный каркас с рядом гидроксильных групп. Выпускаются силикагели различных марок. Первая буква в марке обозначает форму и размер зерен, третья — преобладающий размер пор, например кем — крупнозернистый силикагель мелкопористый. Кроме того, выпускаются мелкопористые силикагели ШСМ и МСМ, а также крупнопористые —КСК, ШСК, МСК. Выбор марки силикагеля зависит от размера молекул адсорбируемых комиоиентоп. Например, для разделения и аналмза керосиновых и масляных фракций используются крупнопористые силикагели, для осушки углеводородов — мелкопористые. [c.72]

    В последнее время наблюдается возрождение ЖЖХ благодаря созданию соверщенных жидкофазны) хроматографов с чувствительными детекторами и автоматн еской записью хроматограмм. Для повышения скорости анализа и эффективности разделения ЖЖХ проводят под давлением до 30 МПа. Наиболее целесообразно использование ЖЖХ для исследования высокомолекулярных соединений нефти. [c.91]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    Выше отмечалось, что основная часть содержащейся в нефти серы (70—90%) сконцентрирована в высокомолекулярной ее части. Поэтому особый интерес представляет изучение закономерностей распределения ее среди различных групп высокомолекулярных соединений нефти. Эти закономерности детально изучались в руководимой автором лаборатории высокомолекулярных соединений нефти Института нефти Академии наук СССР. Чтобы избежать разложения высокомолекулярных гетероорганических соединений нефти при разделении ее на основные компоненты, применялось нагревание (в вакууме при температуре не выше 215° С). Основным методом разделения являлись хроматография на активированнол крупнопористом силикагеле и молекулярная перегонка (вакуум 1 мм рт. ст., температура в конце перегонки 215 С). Наиболее подробно была исследована высокомолекулярная часть ромашкинской (девонской) [c.335]

    Большое влияние всех этих факторов на разделение сложной многокомпонентной системы объясняется отсутствием в этой системе резких переходов между полициклическими углеводородами и смолами, а также между смолами и асфальтенами. Вследствие близости размеров и типов структур их молекул границы, отделяющие каждую из этих двух нар высокомолекулярных соединений нефти (углеводороды — смо.лы и Слмолы — асфальтены), размазаны, и поэтому следует применять всемозможные меры, чтобы проявить эти границы, сделать их более ясными, если не удастся достичь резкости. [c.496]

    Гель-хроматография (гель-фильтрационная, гель-проникающая, молекулярно-ситовая хроматография) применяется для разделения и анализа высокомолекулярных соединений, а также для отделения кх от низкомолскулярных веществ. Этим методом можно определить мо.пеку-лярную массу полимеров, рассчитать кривую распределения макромолекул по молекулярным массам. [c.58]

    Эффективность разделения сложных смесей высокомолекулярных соединений нефтей на более однородные но физическим свойствам и химической природе группы веществ не только ответственный подготовительный процесс, но и первая стадия изученпн химического строения этих соединений. [c.25]

    При обычной коагуляции коллоидный раствор разделяется на две фазы жидкую дисперсионную среду и более или мекее твердую дисперсную фазу (рис. 122, а). При гелеобразовании подобного разделения нет вся масса раствора превращается в твердообразную нетекучую систему, во всех частях которой концентрация дисперсной фазы или высокомолекулярного соединения остается одинаковой и неизменной. При коагуляции мицеллы контактируют между собой наиболее тесно, что ведет к образованию осадка. При возникновении внутренних структур, т. е. при образовании студня, происходит объединение частиц в форме сетки или ячеек, напоминающих 11ену (рис. 122, 6). [c.390]


Смотреть страницы где упоминается термин Высокомолекулярные соединени разделение: [c.315]    [c.272]    [c.9]    [c.11]    [c.448]    [c.452]    [c.43]    [c.25]    [c.28]    [c.53]    [c.407]    [c.73]    [c.185]    [c.467]   
Практическое руководство по жидкостной хроматографии (1974) -- [ c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте