Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристики горения

    Примерами практического применения рассмотренных характеристик горения являются номограммы для определения потерь тепла с дымовыми газами котлов или печей и коэффициента полезного действия (эффективности сжигания топлива), построенные для пропана и бутана (рис. 9). Как пользоваться ими, рассмотрим на примере отапливаемой бутаном печи. Анализ и измерения показали, что содержание СО2 в сухих дымовых газах равно 11 %, а их температура на выходе — 400 °С. Проведем горизонтальную линию (рис. 9,6), начиная от точки на левой оси, соответствующей 11 % СО2, до пересечения с пунктирной кривой изменения СО2 в продуктах сгорания. Опустив из точки пересе- [c.58]


    В последние годы появились новые сырьевые источники и технологические способы переработки нефти. Это привело к изменению физико-химических и эксплуатационных свойств стандартных топлив для авиационной техники. К настоящему времени накоплены новые экспериментальные и расчетные данные об их свойствах (например, противоизносных, электрических, характеристиках горения, термостабильности и т. п.), получены также новые материалы по изменению этих свойств в зависимости от различных факторов. [c.5]

    Другие характеристики горения. При расчетах горения топлива наиболее употребительны следующие характеристики теоретический расход воздуха на горение, объем уходящих газов, предельное содержание СО2, скорость горения, температура воспламенения, концентрационные пределы воспламенения и температура пламени (табл. 16). [c.57]

    Неизбежно возникает вопрос, каким образом сравнивать водород и природный газ (метан) с точки зрения их физико-химических свойств и характеристик горения. Данные, приведенные в табл. 46, показывают, что их свойства имеют существенные различия одни из них предпочтительны для водорода, другие отвергают его как топливо. [c.233]

    В жидких фракциях углеводородов —Сд содержится много изопарафинов. Бензины можно использовать во многих случаях как компоненты автомобильных топлив или направлять на каталитический риформинг. Средние дистиллятные продукты отличаются низким содержанием серы и ароматических углеводородов и обладают высокими характеристиками горения. [c.48]

    Характеристики горения реактивных топлив, определяемые с помощью установки ВНИИ НП, приведены ниже (числитель-норма по стандарту, знаменатель - интервал фактических значений)  [c.130]

    Таким образом, к современным реактивным топливам предъявляется ряд требований, которые в известной мере являются взаимоисключающими друг друга. Действительно, снижение давления насыщенных паров и повышение плотности топлив достигается утяжелением фракционного состава, что вызывает ухудшение характеристик горения. С другой стороны, снижение содержания в топливе ароматических углеводородов для улучшения характеристик горения приводит к понижению плотности, т. е. ухудшению качества по показателю объемная теплота сгорания. Противоречия такого рода можно обнаружить, если детально рассмотреть и другие требования к реактивным топливам. Поэтому каждый сорт реактивного топлива является компромиссом между различными требованиями, выдвигаемыми авиационной техникой. [c.16]


    Примечание. В дальнейшем в целях расширения ресурсов и унификации топлив отдельные показатели, например влияющие на характеристики горения, могут изменяться. [c.20]

    Так, на топливе Т-8 эксплуатировался сверхзвуковой пассажирский самолет Ту-144. Топливо РТ вследствие высокого давления насыщенных паров можно применять на этом самолете только при ограничении скорости сверхзвукового полета [21]. Плотность топлива Т-8В также выше (не менее 800 кг/м ), чем топлива РТ (ие менее 775 кг/м ). Топливо Т-6 превосходит остальные топлива по плотности (ие менее 840 кг/м ) и давлению насыщенных паров (не более 18,6 кПа при 150 °С). Температура выкипания топлива находится в пределах 195—308°С. При таком фракционном составе массовая теплота сгорания и характеристики горения мало отличаются от аналогичных показателей топлив облегченного фракционного состава. Это достигается оптимизацией углеводородного состава топлива, в частности низким содержанием ароматических углеводородов 5—9% (масс.) моноциклических и менее 0,5% (масс.) бициклических. [c.20]

    Определение характеристик горения. Оценка характеристик горения основана на сравнении оценочных показателей топлив, полученных при работе модельной камеры сгорания на испытуемом и эталонном топливах. [c.211]

    Для определения теплоты сгорания топлива воспользуемся характеристиками горения простых газов  [c.163]

    Таким образом, к современным дизельным топливам предъявляется ряд требований, взаимоисключающих друг друга. Действительно, ужесточение экологических требований требует снижения содержания серы в топливе, что в свою очередь вызывает снижение его окислительной стабильности и противоизносных свойств. С другой стороны, снижение содержания в топливе ароматических углеводородов для улучшения характеристик горения приводит к ухудшению качества по показателю объемной теплоты сгорания. Есть и другие противоречия. [c.36]

    Газовая промышленность, особенно в Европе, оказалась перед необычной дилеммой. Угольный газ поднялся в цене, но тем, не менее очень большое число потребителей и еще большее число газовых приборов снабжались газом из многочисленных распределительных сетей и фактически превратились в потребителей поневоле. В результате роста цен на газ его потребление не повышалось, а порой даже снижалось, и бремя увеличивающейся твердой себестоимости газа все больше сказывалось на его цене. Поэтому там, где это было возможно, городской угольный газ (4 450 ккал/м , или 18 630 кДж/м ) стали заменять дешевым природным газом (9—10 тыс. ккал/м , или 38—42 тыс. кДж/м ), несмотря на необходимость модификации или полной замены существующего газогорелочного оборудования с учетом характеристик горения нового энергоносителя. Перевод оборудования на новое газообразное топливо фактически превратился в самостоятельную важную отрасль промышленности. Миллионы потребителей во всем мире уже переведены на этот газ, несмотря на очень высокие затраты со стороны газовых компаний [5]. [c.13]

    Наконец, для учета определенных отклонений в характеристиках горения высших углеводородов и газовых смесей, содержащих кислород или двуокись углерода, в обычное и расширенное числа Воббе были введены полуэмпирические поправки, и было получено так называемое модифицированное число Воббе [c.46]

    Цель всех процессов газификации — превращение ископаемого топлива с высокой относительной молекулярной массой, высоким отношением углерода к водороду и часто с высоким содержанием загрязняющих примесей в чистое газообразное топливо, имеющее низкую относительную молекулярную массу, низкое отношение С/Н и пригодное для сетевого распределения. При производстве ЗПГ желательно, чтобы он как можно ближе воспроизводил все свойства и особенно характеристики горения природного газа. [c.87]

    Процесс <КОГ> Британской Газовой корпорации. Состав газа и характеристики горения [c.104]

    В табл. 28 приведены сравнительные данные по составу и характеристикам горения продуктов гидрогазификации лигроина соответственно после низкотемпературной конверсии, гидрогазификации и, наконец, после стадии метанизации, предусмотренной исключительно для удаления из газа остаточных следов водорода. [c.127]

    Характеристики горения Высшая теплота сгорания ккал/м 5670 6400 6680 [c.182]

    Характеристика горения после осушки и снижения содержания СО2 до 1 об. % Высшая теплота сгорания бте/фут 900,75 954,0 [c.182]

    В табл. 37 приведены составы газов на входе и выходе как первой, так и второй стадий процесса метанизации, примененных в установке типично низкотемпературной конверсии ( МБГ-про-цесс ). Характеристики горения, данные в таблице, относятся не к газу, непосредственно образовавшемуся в установке, а к газу, прошедшему осушку, или к осушенному газу, прошедшему стадию снижения содержания в нем двуокиси углерода до I % -Таким образом, на первой стадии метанизации производится газ, содержащий около 10% водорода (в пересчете на сухой) я имеющий скорость распространения пламени, приблизительно равную 0,184 м/с. Как было показано в гл. 3, это вполне приемлемо для бытовых установок США, однако расчеты должны быть предельно точными. Как уже упоминалось в гл. 6 при рас- [c.183]


    В обеих установках компоненты газа, выходящего из печи низкотемпературного риформинга, находятся, по-видимому, в химическом равновесии, и дальнейшее образование метана может быть достигнуто только введением иового компонента или снижением температуры. В настоящее время для обогащения газа в процессе Газинтан используется каталитическая гидрогенизация, т. е. снижается температура (приблизительно до 350°С) и вводится дополнительный очищенный пар лигроина, реагирующий, с оставшимся водородом и паром. Температурный профиль во втором реакторе, однако, повышается с самого начала, так как при низкой температуре не происходит никакого эндотермического крекинга или риформинга, а избыточный водород обеспечивает немедленное начало экзотермических реакций гидрогенизации. Аналогично процессу КОГ и здесь желательно улучшить характеристики горения получаемого газа путем дополнительной стадии метанизации. Это обеспечивает удаление любого остаточного водорода, и после поглощения основной части двуокиси углерода, находящейся в газе, окончательный продукт становится полностью взаимозаменяемым с природным газом, содержащим главным образом метан. Выходное давление обычно близко -к 35 кгс/см (3,5 МПа). [c.109]

    Характеристики горения Высшая теплота сгорания  [c.184]

    Характеристики горения Высшая теплота сгорания ккал/мз 8899 8908 [c.186]

    Важное значение имеют также характеристики горения топлива. Топлива с плохими характеристиками горения вызывают нагарообразование в камерах сгорания, дымление двигателей. Повышенный интерес к проблеме дымления топлива объясняется большим вниманием к борьбе с загрязнением воздушного бассейна крупных городов выхлопными газами автомобилей, снабженных дизельными двигателями. Улучшить характеристики горения можно обеспечив соответствующим фракционным составом топлива, т. е. снизив содержание в топливе (прежде всего бициклических) и нафте-ноароматпческих углеводородов, а также повысив содержание [c.35]

    Всю систему соединяют короткими резиновыми трубками, адсорберы погружают наполовину в ледяную ванну, и систему в течение 15 мин продувают воздухом. К концу продувки перекрывают вход в адсорберы, удаляют их из ванны, выдерживают не менее 30 мин, чтобы привести к комнатной температуре, открывают на короткое время для выравнивания давления и взвешивают с точностью до 1 мг. Время, пока адсорберы выдерживаются, используют для подготовки лампочки. Устанавливают фитиль в горелку, вводят пипеткой в резервуар лампочки 5 мл образца, помещают горелку в лампочку и закрывают ее стеклянным колпачком, а ввод в лампочку — резиновой трубкой с пробкой. Характеристики горения в лампочке зависят от потока воздуха, свойств испытуемого образца, толщины и положения фитиля в горелке. Два последние фактора могут быть установлены заранее, с тем, чтобы во время испытания горение регулировать только потоком воздуха. При сжигании легколетучих образцов лампочку необходимо помещать в ванну СО льдом на весь период сгорания, а при сжигании слишком нелетучих образцов ее приходится иногда нагревать. [c.55]

    Авторы приводят исчерпывающие сведения практически по всем аспектам использования как существующих, так и потенциальных СНГ. В первой части книги основное внимание они уделяют собственно СНГ, рассматривают их особенности, химический состав и методы очистки. Описание авторами физических и химических свойств данных газов является всеобъемлющим. Ими установлены основополагающие критерии, которыми следует руководствоваться при решении практических задач, возникающих при переработке и хранении жидких и эффективном сжигании газообразных углеводородов. Исчерпывающие сведения по термодинамическим свойствам компонентов СНГ могут быть в одинаковой степени полезны как студентам и исследователям, так и специалистам-прак-тикам. Рассмотренные в начале работы вопросы горения, в основе которого лежат реакции окисления углеводородов, логично подводят читателя к установлению характеристик горения СНГ, а затем и к конструированию соответствующих горелочных устройств. Первая часть книги заканчивается рассмотрением вопросов распределения, переработки и хранения (включая весьма важные вопросы техники безопасности) СНГ при их использовании в ком- [c.5]

    Некоторые наиболее употребительные характеристики горения СНГ и природного газа [c.58]

    Состав. СНГ прежде всего используют как котельно-печное газовое топливо. Состав основной их массы определяет характеристики горения. Если жидкие СНГ должны испаряться в естественных условиях (баллонный газ), необходимо, чтобы они характеризовались максимальным содержанием углеводородов типа С5, С4 нли их состав существенно изменялся по мере опорожнения баллона. Однако в промышленных условиях жидкие СНГ всегда испаряются за счет внешнего источника тепла, поэтому их состав остается постоянным (состав жидкости не меняется). В этом случае нет необходимости оговаривать точный состав СНГ по соотношению С3/С4. Чтобы свести остатки к минимуму, в СНГ следует лимитировать содержание пентанов и гексанов для пропанов — [c.78]

    Не менее важными характеристиками горения газа являются показатель желтых язычков и показатель сажеобразования, играющие существенную роль при решении вопроса о замене одного газа другим. Хотя желтые язычки могут образовываться и без изменения состава топлива в случаях, когда имеется недостаток первичного воздуха, некоторые газы, особенно высшие парафины и олефины, склонны к образованию желтых язычков и сажи даже при подаче достаточного количества первичного воздуха. [c.105]

    Характеристика горения газов [c.154]

    Не менее сложная проблема — непостоянство состава СНГ. Содержание пропана и бутана меняется в широких пределах. Все это влияет на характеристики горения, размеры пламени и его стабильность, а также на тепловую мощность горелок, особенно при использовании широко распространенных в бытовых и коммунальных приборах и печах горелок типа Бунзена. При переводе горелок с чистого пропана на бутан для обеспечения количественного и качественного смешения с первичным воздухом необходимо повышение давления бутана. Если не требуется менять тепловую мощность, давление бутана надо снижать. [c.196]

    Искусственные топливные газы, по теплоте сгорания и характеристикам горения эквивалентные коксовому газу из угля, могут быть получены при частичном риформинге, т. е. при обеспечении наличия в реформированном газе некоторого количества метана или непрореагировавшего исходного сырья. Риформинг можно провести и до конца, т. е. до образования СО и Нг, а затем вне реактора добавить к ним некоторое количество СНГ, используемого в качестве сырья. Высшая теплота сгорания синтетического газа, равная примерно 12 МДж/м , может быть повышена до 18— 20 МДж/м , т. е. до теплоты сгорания коксового газа. [c.239]

    Видимо, всегда можно подобрать такие условия, при которых будет осуществляться та или иная модель горения. Задача теории заключается в количественном определении этих условий и в расчете характеристик горения скорости распространения, ширины зоны реакции, пределов воспламенения и т. д. В практически интересных случаях (камеры сгорания, топки и т. д.) в пламени одновременно могут наблюдаться признаки различных моделей. В теории турбулентного горения большую роль играют молекулярно-турбулентная диффузия и смешение. [c.138]

    Температура. Реакционная способность серной кислоты значительно увеличивается нри повышенной температуре очистки. Для производства минеральных масел глубокой очистки температуру во время контактирования с кислотой повышают до 87—90° С, но перед выделением кислого гудрона быстро снижают до 54—60° С путем циркуляции через холодильники. С повышением температуры значительно возрастает интенсивность реакций сульфирования и окисления. Реакции полимеризации также усиливаются с повышением температуры, но не столь быстро, как сульфирование и окисление. Очистка при высокой температуре может использоваться для улучшения характеристик горения керосина и реактивного топлива. При постоянном расходе кислоты степень обессеривания, по-видимому, обратно пропорциональна температуре обработки. Обычно температура очистки лежит в пределах 18—38° С. Температура, требуемая для очистки масляных фракций, приблизительно пропорциональна вязкости масляного сырья. Очистку масляного дистиллята вязкостью (при 38° С) 20,2 сст можно проводить при 32—35° С, для очистки масляного сырья вязкостью (при 38° С) 330 сст требуется температура 57—60° С. Потери очистки, как правило, непосредственно зависят от температуры процесса. Однако выбор оптимальной температуры очистки не должен полностью определяться потерями продукта, так как температура, при которой достигаются минимальные потери, скорее всего не совпадает с оптимальной, обеспечивающей достижение важнейших целей очистки. [c.111]

    Важное значение имеют также характеристики горения топлива. Топлива с плохими характеристиками горения вызывают нагарообразование в камерах сгорания, дымление двигателей, а также могут привести к повышению излучения пламени. Нагарообразование и высокая теплорадиация пламени приводят к уменьшению ресурса работы камер сгорания. Повышенный интерес к характеристикам топлива по дымлению объясняется большим вниманием, уделяемым в последнее время борьбе с загрязнением окружаюш,ей среды. Улучшение характеристик горения достигается обеспечением соответствующего фракционного состава топлива, а при заданном фракционном составе — снижением содержания в топливе ароматических (прежде всего бициклических) и нафтено-ароматических углеводородов, а также повышением содержания изопарафиновых углеводородов. Содержание ароматических углеводородов в реактивных топливах снижают подбором соответствующего сырья, а также проведением процессов гидродеароматизации. [c.16]

    В параметры газа, рассмотренные в настоящей главе, преднамеренно не В1ключены так называемые характеристики горения, определяющие протекание процесса горения в известных го- [c.41]

    Преобразование лигроина в газ с помощью пара может быть осуществлено двумя путями в зависимости от температуры реакции. При этом можно получать либо смесь окиси углерода с водородом при высокой температуре (около 800°С), либо метан, разбавленный двуокисью углерода и водородом, при температуре около 470°С. Второй процесс, известный 1как низкотемпературный риформинг, более предпочтителен для производства ЗПГ, поскольку в этом случае можно упростить последующие стадии очистки и обогащения газа. Если ЗПГ должен отвечать только техническим критериям по взаимозаменяемости с природным газом, может оказаться достаточной его очистка от больщей части двуокиси углерода, которая приблизит ЗПГ по характеристикам горения, но не по теплоте сгорания, к природному. Если обеспечения коммерческой взаимозаменяемости не требуется, полученный газ можно оставить в этом виде. Только при необходимости удовлетворения и технической, и коммерческой совместимости ЗПГ и природного газа необходима дальнейшая обработка полученного газа. [c.100]

    В табл. 26 приведены состав, и характеристики горения ЗПГ, получаемого в результате процесса Газинтан , после метанатора и окончательной очистки от СОг Д я двух случаев метанизации с предварительным влагоудалением и без влагоудаления. [c.109]


Смотреть страницы где упоминается термин Характеристики горения: [c.18]    [c.185]    [c.19]    [c.375]    [c.34]    [c.9]    [c.21]    [c.22]    [c.42]    [c.186]    [c.43]    [c.71]   
Смотреть главы в:

Основные характеристики горения -> Характеристики горения




ПОИСК







© 2025 chem21.info Реклама на сайте