Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральное определение кремнии и его соединениях

    КОЛИЧЕСТВЕННОЕ СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ КРЕМНИЯ В РАСТВОРИМЫХ КРЕМНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ [c.159]

    Коэффициент вариации результатов стадии физико-химической обработки пробы в лучшем случае равен коэффициенту вариации результатов собственно спектрального определения, но обычно ошибка стадии концентрирования в 1,5—3 раза больше ошибки спектрального определения [244, 496]. Особенно велики дисперсии результатов на стадии концентрирования при проведении анализа на распространенные элементы в недостаточно чистых условиях. В химико-спектральном анализе кремния, германия и их соединений [116] дисперсии результатов стадии концентрирования при определении Ре, А1 и Mg оказалась в 25—100 раз выше дисперсии результатов спектрального определения тех же элементов. [c.237]


    В анализе чистого кремния и его соединений широко используют эмиссионные спектральные методы для одновременного определения большой группы примесей, а также и отдельных примесей. Непосредственное определение примесей в кремнии на спектрографе средней разрешающей силы имеет обычную, относительно невысокую 10 %) чувствительность [35—37]. Применение спектрографа с высокой разрешающей силой лри анализе карбида кремния повысило на порядок чувствительность определения некоторых примесей [38]. Использование фотоэлектрического спектрографа в сочетании со специальным электронным вычислительным устройством [39] позволит повысить чувствительность прямого спектрального определения примесей не менее чем на два порядка. [c.36]

    Возможная чувствительность химико-спектрального определения примесей В кремнии и его соединениях приведена в табл. 2. [c.75]

    Метод основан на спектральном определении бора в концентрате, полученном при обогащении пробы путем удаления основного элемента— кремния в виде тетрафторида в присутствии маннита, образующего с бором труднолетучее комплексное соединение. [c.86]

    ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ ХИМИКО-СПЕКТРАЛЬНОГО ОПРЕДЕЛЕНИЯ СЛЕДОВ МЕТАЛЛОВ В СОЕДИНЕНИЯХ КРЕМНИЯ [c.12]

    Использование эмиссионной спектроскопии для анализа органических продуктов, биологических объектов и т. д. до сих пор сводилось к анализу получаемого после их химического разложения неорганического остатка. Однако введение в анализ химического разложения пробы в качестве дополнительной операции лишает эмиссионную спектроскопию основных ценных свойств. Нами был разработан спектральный метод определения кремния в кремнийорганических соединениях без предварительной химической обработки. В последнее время в литературе по эмиссионному спектральному анализу стали появляться такие работы [1,2]. [c.159]

    Эмиссионный спектральный анализ не дает возможности судить о структуре молекул, и поэтому его применяют главным образом для идентификации кремнийорганических соединений, открытия кремния, входящего в состав данного исследуемого вещества, и определения кремния и других эле.ментов в мономерных и полимерных соединениях, а также примесей в кремнемедном сплаве . [c.376]

    При анализе соединений лития для устранения влияния состава соединений на интенсивность спектральных линий может быть применено фторирование с применением фторопласта [545, 546]. В методике [177] для увеличения чувствительности определения кремния и алюминия добавляют хлорид серебра. [c.158]


    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Для определения ЗЬ в кремнии, кварце, карбиде кремния, стеклах, тетрахлориде кремния и трихлорсилане наиболее часто применяют методы спектрального анализа (табл. И). Для определения ЗЬ в кремнии и его соединениях высокой чистоты пшроко используются также активационные методы. Особенно удобны те из них, которые позволяют определять ЗЬ без ее выделения [212, 468, 762, 932, 950, 989, 1144, 1361, 1366, 1540). Ме- [c.133]

    Определение сурьмы в кремнии и его соединениях методами эмиссионного спектрального анализа [c.134]

    Для определения мышьяка в кремнии, его соединениях и стеклах предложен ряд методов, в том числе нейтронно-активационные (202, 404, 696, 806, 1062], спектральные [242, 421, 647, 1218], полярографические [274]. [c.164]

    Для определения алюминия обычно используют дуговое возбуждение. Проба интенсивно испаряется и спектральные линии хорошо возбуждаются. Искру применяют сравнительно редко (при анализе растворов и брикетов). У алюминия невысокие энергия ионизации (5,98 эв), а также энергия возбуждения чувствительных линий. Поэтому с введением в пробу щелочных элементов чувствительность анализа резко повышается. В качестве внутреннего стандарта при определении алюминия хорошие результаты дают соединения магния, кремния и кальция. Однако эти элементы широко распространены в природе и их использование затруднительно. Удовлетворительные результаты получают, используя бериллий, барий, хром, кобальт и никель. [c.194]

    Наиболее важным количественным определением при анализе кремнийорганических соединений является определение ос новного элемента — кремния. Это определение может быть осуществлено весовым, объемным, фотометрическим или спектральным методами. [c.105]

    Учитывая, что калий, являясь крупным катионом, должен давать прочное малодиссоциированное соединение с крупным анионом [7] кремнефтористоводородной кислоты, в 1959 году одним из нас было успещно выполнено концентрирование примеси 1 10 % кремния в плавиковой кислоте выпариванием 20 мл этой кислоты с добавкой 10 мг хлористого калия и 0,05 г угля. В остатке кремний определяли спектральным методом. В этих опытах практически полностью обнаруживали вводимые количества кремния. Затем в том же году были проведены [8] аналогичные сравнительные опыты определения микропримеси кремния в плавиковой кислоте с добавкой хлористого рубидия либо калия. Однако в этих опытах практических преимуществ замены калия рубидием (радиус иона которого больще, чем у калия) выявить не удалось [8]. [c.284]

    Возможность протекания химических реакций в плазме отмечена в работах [13, 101, 118]. Райхбаум и Костюкова [101] расчетным способом показали, что при температуре плазмы 3000—5000° С некоторые металлы образуют устойчивые двухатомные молекулы. Это приводит к уменьшению концентрации свободных атомов и ослаблению интенсивности спектральных линий. Для элементов, образующих прочные соединения с кислородом, таких, как Zr, Ве, Nb, Мо, Та, одним из путей повышения чувствительности определения является введение в пробу кремния, имеющего сродство к кислороду больше, чем эти металлы, Примером уменьшения отрицательного влияния химических реакций в плазме может служить определение Li в форме ЦР в присутствии СаО (рис. 80). В присутствии Са концентрация свободных атомов Li в плазме возрастает за счет связывания Р-иона в устойчивое соединение СаР. Одновременно возрастает интенсивность молекулярной полосы СаР. Химические реакции в плазме электрической дуги и их роль при проведении спектральных определений изучены пока недостаточно. Можно отметить, что многообразие факторов, влияющих на процесс испарения веществ, позволяет управлять этим процессом в нужном для практических целей направлении. Метод фракционной дистилляции элементов часто используется для решения ряда аналитических задач (например, при определении микропримесей). [c.127]

    За последнее время разработаны также разнообразные физические и физико-химические методы анализа кремнийорганических соединений ,. причем в подавляющем числе случаев указанные методы применительно к исследованию кремнийорга- ических соединений впервые были разработаны советскими учеными. Так, например, только в лаборатории кафедры аналитической химии МХТИ им. Д. И. Менделеева были разработаны следующие методы фотометрические методы определения кремния в кремнийорганических соединениях - 7- фотометрические методы определения алкокси- и ароксисила-нов 9- полисилоксанов , феноксигрупп примесей спир-тов з и фенолов в кремнийорганических соединениях триметилхлорсилана в продуктах прямого синтеза метилхлор-силанов - 7 , трихлорсилана , примеси тетрахлорсилана в алкоксисиланах фототурбидиметрический и весовой методы анализа алкилхлорсиланов определение водородсодержащих алкилхлороиланов в смеси с четыреххлористым кремнием и другими алкил (арил) хлорсиланами 9 эмиссионный спектральный анализ мономерных и полимерных кремнийорганических соединений на содержание в них кремния анализ кремнийорганических соединений методами ультрафиолетовой и инфракрасной спектроскопии - термографический метод определения чистоты и температур кипения кремнийорганических соединений физико-химические методы титрования разнообразных кремнийорганических соединений в неводных раство-рах - метод электронно-микроскопического исследования кремнийорганических соединений и материалов, получаемых на их основе, и другие методы - [c.37]


    В работе [466] во всех случаях спектральное определение бора проводили в концентрате, который получали путем удаления основного элемента — кремния — в виде тетрафторидй в присутствии маннита — многоатомного спирта, образующего с бором труднолетучее комплексное соединение. [c.28]

    Определение массовой доли ванадия, железа и кремния является обязательной частью контроля качества нефтяных коксов. Рекоыевдуе-мый ГОСТом 22898-78 колориметрический метод определения указанных элементов в нефтяных коксах предусматривает оэоленне коксов, что вызывает потери легколетучих соединений ванадия и никеля. Для определения микроэлементов непосредственно в нефтяных коксах в БашНИИНП разработан более экспрессный спектральный метод il. [c.119]

    Специфика этой задачи в том, что материал пробы ограничен малой навеской, но требуется высокая точность определения. Классический метод гравиметрического определения 8102 не подходит прежде всего из-за заметной растворимости кремниевой кислоты в водных растворах. С другой стороны, для кремния нет надежных методов объемного определения, а фотоколориметриче- ские методы и методы эмиссионного спектрального анализа, хотя и чувствительные, не обеспечивают необходимой надежности результатов анализа. Можно предположить такой путь анализа не увеличивая анализируемой навески, оса-,дить Кремний в виде малорастворимого соединения с высокой молекулярной массой. Если предварительные операции переведения ЗЮг в раствор и последующего осаждения, фильтрования, промывания и высушивания осадка обеспечивают количественное выделение стехиометрически чистого соединения кремния, общая ошибка анализа будет определяться в основном ошибками взвешивания при отборе пробы и конечном определении. Используя для осаждения и взвешивания кремния оксихинолиновую соль кремнемолибденовой кислоты, получаем соединение с молекулярной массой 2440  [c.26]

    Научные исследования охватывают широкий круг проблем естествознания, в частности проблемы строения с.1ликатов геохимии редких и рассеянных элементов поиска радиоактивных минералов роли организмов в геохимических процессах определения абсолютного возраста горных пород. В монографиях Опыт описательной минералогии (1908—1922) и История минералов земной коры (1923—1936) выдвинул эволюционную теорию происхождения минералов — так называемую генетическую минералогию. В 1908 завершил работы о генезисе химических элементов в земной коре. Созданное им учение о роли каолинового ядра и строении алюмосиликатов явилось фундаментом современной кристаллографии. Разработал представления о парагенезе и изоморфных рядах, которые легли в основу одного из научных методов поисков полезных ископаемых. Исследовал редкие и рассеянные химические элементы в изоморфных соединениях и в их рассеянном состоянии. Изучал химический состав земной коры, океана и атмосферы. Проводил (с 1910) поиски месторождений радиоактивных минералов и их химические исследования с целью определения наличия радия и урана. В работе Очерки геохимии (1927) изложил историю кремния и силикатов, марганца, брома, иода, углерода и радиоактивных элементов в земной коре. Первым применил спектральный метод для решения геохимических задач. Предсказал [c.102]

    Метод основан на предварительном концентрировании примесей путем химического разложения двуокиси кремния или кварца парами фтористоводородной кислоты и на последующем спектральном анализе сухого остатка жидкого концентрата в угольной дуге переменного тока [1]. Метод ирименим для определения всех примесей, которые не образуют в присутствии серной кислоты летучих фтористых соединений. Примеси В, Аз и Р этим методом не определяются. [c.78]

    N68. M i r i a s s у M. H., В о r s i с z к у V., S о m о g у i, L, Спектральный метод определения двуокиси кремния и фторида кальция в криолите и других фторсодержащих соединениях, Kohasz. lapok 9 (1954), 267 РЖхим. (1955), 2266. [c.605]

    Отгонка летучих химических соединений. Этот метод основан на переведении основного компонента пробы в летучее соединение и его отгонке после чего примеси остаются в остатке. На этой схеме основаны некоторые способы концентрирования примесей в германии [36, 43], который в виде тетрахлорида отгоняется, а примеси (20 и более) остаются в дистилляционном остатке для спектрального анализа. Чувствительность определения - 20 элементов составляет 10 —Ю- %. Подобным способом определяются примеси в хлориде галлия, в хлориде олова и др. При концентрировании примесей в кремнии и в его соединениях кремний удаляют в виде 31р4 43], а примеси концентрируются на угольном порошке для последующего спектрального анализа при химико-спектральном анализе бора его отгоняют в виде борнометилового эфира [43] или в виде ВР.ч 45], в последнем случае примеси марганца, молибдена и вольфрама концентрируют на хлориде серебра. [c.177]

    Наибольшее значение из этих методов приобрели спектроскопические методы анализа кремнийорганических соединений змиосионный спектральный анализ, позволяющий идентифицировать кремнийорганические соединения и количественно определять кремний и другие элементы, ультрафиолетовая спектроскопия, с помощью которой можно количественно определять содержание фенильных групп в полисилоксанах и примеси ароматических соединений в различных кремнийорганических соединениях метод инфракрасной спектроскопии, применяемый для определения чистоты, идентификации и изучения строения кремнийорганических соединений масс-спектроскопический анализ метод ядерного магнитного резонанса термографический метод анализа и др. [c.112]

    Сдобно в а Е. П., Щекина Т. В., Попков К. К. Химико-спектральный метод определения микропримесей в соединениях кремния особой чистоты . В сб. Анализ полупроводниковых материалов , изд-во Наука , М., [c.166]

    Stuttgart, S hellingstrasse 26 Директор J. Goubeau Направление научных исследований определение структуры неорганических соединений бора, кремния и фосфора спектральный анализ. [c.325]


Смотреть страницы где упоминается термин Спектральное определение кремнии и его соединениях: [c.173]    [c.113]    [c.37]    [c.37]    [c.119]    [c.74]    [c.18]    [c.148]    [c.20]   
Аналитическая химия марганца (1974) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Соединение определение



© 2025 chem21.info Реклама на сайте