Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры с аморфным блоком и кристаллизующимся блоком

Рис. 18. Пример фазовой диаграммы сополимеров, состоящих из аморфного и кристаллизующегося блоков, в растворе [36]. Рис. 18. <a href="/info/1485101">Пример фазовой диаграммы</a> сополимеров, состоящих из аморфного и кристаллизующегося блоков, в растворе [36].

Рис. 22. Пример фазовой диаграммы сополимеров с аморфным и кристаллизующимся блоками в селективном для кристаллизующегося блока растворителе (система С-ОЭ Рис. 22. <a href="/info/1485101">Пример фазовой диаграммы</a> сополимеров с аморфным и кристаллизующимся блоками в селективном для кристаллизующегося блока растворителе (система С-ОЭ
    Было бы интересно сопоставить складчатость цепей ПОЭ в сополимерах С-ОЭ и ЭМА-ОЭ. Полидисперсность сополимеров ЭМА-ОЭ довольно высокая [67], поэтому толщина слоя ПОЭ в них точно не известна, и остается некоторая неопределенность в расчете значения V, даже если V имеет тот же порядок величины, что и для сополимеров С-ОЭ с аналогичными молекулярными характеристиками. Тем не менее можно сделать вывод, что конформация аморфного блока оказывает большое влияние на площадь, приходящуюся на цепь ПОЭ, а следовательно, и на число складок кристаллизующегося блока. [c.239]

    Если к раствору аморфного гомополимера с широким молекулярно-массовым распределением в термодинамически плохом растворителе добавить осадитель или такой раствор охладить, то можно наблюдать разделение на фазы. Обычно вначале выделяются молекулы большей молекулярной массы, на чем и основано явление фракционирования [394]. Поведение блок-сополимеров ПС/ПЭО в растворе несколько отличается [556, 576] из-за того, что блоки разной химической природы имеют различную растворимость, а также вследствие того, что блоки ПЭО могут кристаллизоваться. [c.164]

    Блоксополимеры ОЭ с изопреном [12] и этилметакрилатом [13] состоят из кристаллизующихся и аморфных частей. Увеличение массовой доли аморфной части в сополимере сопровождается уменьшением температуры плавления. Использование растворителей с различным термодинамическим качеством по отношению к блокам позволяет получать пленки с различным распределением кристаллических образований в них. [c.102]

    Реологические свойства расплавов аморфных блок-сополимеров, например бутадиен-стирольных [36, 394, 615], уже были описаны и интерпретированы (см. разд. 4.11). Интересно сравнить поведение аморфных блок-сополимеров со свойствами блок-сополимеров, содержащих в своем составе кристаллизующиеся блоки. Основной работой по исследованию реологии блок-сополимеров следует считать работу Эрхарда и др. [262], в которой определены комплексный модуль и tg6 и изучено поведение расплава в области температур 60—200°С. Представляет также интерес исследование диэлектрических свойств [742]. [c.161]


    Свойства блоксополимеров отличаются от спойств простых сополимеров даже при их одинаковом химическом составе. Это объясняется тем, что отдельные гомополимерные блоки в составе макромолекул имеют большую длину. Вследствие этого блоксополимер не утрачивает свойств, присуш,их гомополимерам, составляющим цепь, а как бы суммирует качества этих гомополимеров. Соединяя блоки кристаллизующихся полимеров с блоками полимеров аморфной структуры, можно получить материал, сочетающий преимущества кристаллических и аморфных полимеров. Получая сополимер, состоящий из гидрофильных и гидрофобных блоков различных [c.535]

    Выше было показано, что сополимеры с двумя и тремя аморфными блоками могут обнаруживать пять типов структур кубическую, гаксагональную, ламеллярную, обратную гексагональную и обратную кубическую. Напротив, сополимеры с кристаллизующимся блоком или полипептидным блоком обнаруживают только ламеллярные структуры кристаллизация цепей или их спиральная конформация препятствует образованию кубической и гексагональной упаковок, возможно, потому, что искривленные поверхности раздела несовместимы с хорошо развитой организацией макромолекулярных цепей. Другим сходством между этими сополимерами является способность как у кристаллизующихся, так и у полипептидных цепей образовывать складки. Таким образом, конформация макромолекулярных цепей в значительной степени определяет тип жидкокристаллической организации, которую образует сополимер. [c.249]

    Для идентификации сополимеров используют также результаты рентгеноструктурного анализа. Нерастянутые образцы аморфных и кристаллизующихся блоксополимеров этилена с пропиленом дают почти одинаковые рентгенограммы, которые невозможно различить. При растяжении аморфных статистических сополимеров, полученных как на растворимых, так и на гетерогенных катализаторах, на рентгенограмме не появляется каких-либо существенных изменений. Аморфные и кристаллизующиеся блоксополимеры, полученные на указанных катализаторах, дают рентгенограммы, состоящие из набора отдельных точек дуг, накладывающиеся на размытые гало, характерные для аморфного образца. Этот эффект был обнаружен нри исследовании блоксополимеров этилена с пропиленом типа Ьэ- Ьэп—Ьэ—Ьэп- растянутых на 300 и 700%, блоксополимера этилена и бутена-1 типа Ьб—ЬэБ—Ьб—ЬэБ— . растянутого на 500%, и блок-сополимера этилена, пропилена и бутена-1 типа Ьэп—Ьб—Ьэп—Ьв, также растянутого на 500%. Однако после релаксации признаки кристалличности исчезают. Контос считает, что это имеет значительную практическую ценность. Показано, что во всех случаях явления кристаллизации, наблюдаемые при растяжении, обусловлены наличием блоков гомополимеров Ьэ или Ьб. [c.171]

    Кристаллизующиеся блок-сополимеры по своим свойствам идентичны кристаллическим гомополимерам либо аморфным блок-сополимерам с недоступными для диффузантов дисперсными фазами. [c.186]

    Физико-механические свойства вулканизатов в большой мере зависят от соотношения звеньев этилена и пропилена в сополимере. Вулканизаты сополимеров, содержащих 73% и больше звеньев этилена, полученных при полимеризации на каталитической системе УСЦ-Ь (ЫЗО-С4Н9) 2А1С1, имеют высокое остаточное удлинение, что можно объяснить наличием в молекулярной цепи сравнительно длинных последовательностей звеньев этилена, ухудшающих релаксационные свойства сополимеров. Блоки с длинными последовательностями звеньев этилена, способные кристаллизоваться, действуют как узлы поперечных физических связей и таким образом, по-видимому, оказывают влияние на подвижность молекул в. соседней аморфной фазе [46]. Наличие микрокристаллической фазы в сополимерах увеличивает сопротивление разрыву невулканизованных резиновых смесей. [c.312]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Поскольку свойства композиции определяются несовместимостью компонентов, то на примере изучения морфологии двухкомпонентных смесей была предпринята попытка обосновать морфологический критерий совместимости, принимая за него отсутствие четкого оптического контраста между структурными (на надмолекулярном уровне) составляющими смесей на основе кристаллизующихся и аморфных полимеров [430]. Таким методом были изучены смеси полиэтилена низкой плотности и блок-сополимера стирола с бутадиеновым каучуком, содержащим 30% стирола, а также ПЭНП и ПЭВН с полиамидом и полистиролом. [c.215]


    По мере увеличения длины последовательностей различных повторяющихся звеньев строение цепи полимера начинает соответствовать уравнениям (3) и (4). В этом случав становится возможным фазовое разделение, что особенно ярко проявляется у двойных и тройных сопожмеров. Е]сли кристаллизоваться способен лишь один из компонентов, происходит обычная кристаллизация со складыванием цепей, а некристаллизующийся блок локализуется на поверхностях ламелей, образуя аморфные слои. Электронная микрофотография такого образования приведена на рис. 3.20. Если кристаллизоваться способны оба компонента, то влияние компонента, кристаллиз тощегося первым, может привести к изменению ламелярной морфологии второго компонента. Пример такого влияния обсуждается в разд. 6.3.4 для тройного блок-сополимера поли(Е=капролактон-со-оксиэтилен). Описание физической структуры в таких системах вполне однозначно в том случае, когда блоки достаточно длинные, так что наличием химических связей между ними можно пренебречь. [c.363]

    Особый случай блок-сополимеров представляют системы, в которых кристаллизуются только боковые группы [уравнение (5)]. Часто число заместителей велико, как, например в длинноцёпочечных полиалкенйх-1. В этом случае.решающее значение имеют места хи-шческого соединения боковых заместителей и основной цепи, так как они определяют, будет ли кристаллизоваться основная цепь или боковые заместители. Для достаточно коротких боковых цепей в изотактических виниловых полимерах наблюдается образование высокскрмсталлических спиральных структур (табл. 2.10 и 2.11). По мере увеличения длины боковой цепи возможно либо образование спиральной кристаллической конформации всего повторяющегося звена цепи, либо кристаллизация только боковой цепи. В последнем случае основная цепь остается некристаллической, а тип кристалла при кристаллизации боковых цапей зависит от условий кристаллизации [148]. При достаточно длинных боковых цепях кристаллизуются даже атактические макромолекулы. В этом случае основные цепи образуют аморфные слои (разд. 10.3.4). [c.363]

    Большую группу блок-сополимеров, представляющих коммерческий интерес, составляют сегментированные полиуретаны, в которых полиоксидные или полиэфирные блоки чередуются с уретановыми блоками (жесткие сегменты). Многие из уретановых блоков этой группы аморфны, однако для тех полиуретановых блоков, которые кристаллизуются, типичным является необратимое плавление [ 124]. Для этих блок-сополимеров с довольно малым размером кристаллов характерны мультиплетные пики плавления и необратимые эффекты при отжиге. Колеман [ 27 ] показал, что химическая структура сегментированных полиуретанов и поли(этилентерефталат- лок-оксиэтилена) одинакова, однако длина кристаллизующихся последовательностей в последних блок-сополимерах значительно больше. При молекулярном весе оксиэтиленового блока от 1000 до 6000 сополимер имеет степень кристалличности и температуру плавления, близкие к значениям для полиэтилентерефталата (см. также [ 154]), [c.441]

    Из работы [6] следует, что в сополимерах ВДХ—ВХ, содержащих более 50% ВДХ, полоса 1206 см относится к деформационным колебаниям С—Н одиночного звена ВХ, расположенного между звеньями ВДХ. Наличие в спектре полос 1250 и 1330 см связано с деформационными колебаниями С—Н ВХ-звеньев, связанных друг с другом. Поэтому указанные выше различия в спектрах сополимеров, полученных разными способами, можно интерпретировать таким образом, что при единовременной загрузке компонентов получаемый продукт очень неоднороден по составу наряду со статистически чередующимися звеньями ВДХ и ВХ встречаются блоки заметной длины, составленные из звеньев ВДХ или ВХ. В случае дозировки ВДХ получаемый сополимер ближе к статистическому. Зависимость температуры стеклования (расстекло-вывания) проб сополимеров, полученных указанными двумя способами (рис. 2), свидетельствует, что не только кристаллизующаяся, но и аморфная составляющая проб на низких конверсиях процесса при единовременной загрузке мономеров обогащена ВДХ. Кроме расстекловывания на термограммах обнаруживается два эндотермических перехода в областях 313—333 и 373—413 К. Второй из них однозначно идентифицируется как интервал плавления кристаллитов, так как рентгенографически кристалличность пропадает при температурах 393—403 К- Появление пика в области 313—ЗЗЗК связано, по-видимому, с процессами [c.42]


Смотреть страницы где упоминается термин Сополимеры с аморфным блоком и кристаллизующимся блоком: [c.440]    [c.136]    [c.347]    [c.433]    [c.434]    [c.599]    [c.59]    [c.60]   
Смотреть главы в:

Жидкокристаллический порядок в полимерах -> Сополимеры с аморфным блоком и кристаллизующимся блоком

Жидкокристаллический порядок в полимерах -> Сополимеры с аморфным блоком и кристаллизующимся блоком




ПОИСК





Смотрите так же термины и статьи:

Блок-сополимеры

Кристаллизующиеся блок-сополимеры

Сополимеры блок-сополимеры



© 2024 chem21.info Реклама на сайте