Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переход эндотермический

    ВЫЙ переход эндотермический (вследствие различия в энергиях нулевых колебаний двух кристаллических фаз), то удается добиться дальнейшего понижения температуры. [c.84]

    Из приведенных данных также следует, что степень упорядочения структурных элементов оказывает существенное влияние на скорость полимеризации. Для ОУМ-1 с более совершенной кристаллической структурой наблюдается резкий переход эндотермического пика в экзотермический. С увеличением длины олигомерного блока и наличии в системе менее совершенных кристаллических структур увеличивается интервал между окончанием процесса плавления и началом кристаллизации. [c.176]


    В процессах химической технологии, протекающих с выделением тепла, переход в неустойчивый режим (в области АВ, рис. У-З) может привести или к затуханию процесса (нижняя точка на рисунке), или, наоборот, к увеличению скорости до предельной (верхняя точка). Для эндотермических процессов имеется один стационарный режим, и он устойчив. Физически это объясняется тем, что при повышении температуры в аппарате теплоотвод усиливается, а при ее понижении — уменьшается, и система всегда стремится к исходному стационарному режиму. [c.159]

    Так, в случае единственной необратимой реакции повышение температуры только увеличивает ее скорость, а в случае обратимой эндотермической реакции — к тому же и смещает равновесие в сторону образования целевого продукта. Если, помимо основной реакции образования целевого продукта, имеется параллельная или (и) последовательная побочная реакция с энергией активации, меньшей, чем у основной, то повышение температуры увеличивает и скорость, и избирательность процесса. Во всех этих случаях температуру процесса следует поддерживать на верхнем допустимом пределе Т. Эта предельная температура может определяться, например, условиями скачкообразного перехода процесса в диффузионный режим, при котором, вследствие сильного разогрева активной поверхности плавится или дезактивируется катализатор или начинают идти незаметные при низкой температуре побочные реакции. Другим фактором, ограничивающим допустимую температуру процесса, может быть возникновение при повышенных температурах нежелательных реакций, идущих в объеме (вне поверхности катализатора) по цепному механизму. Предельная температура Т зависит от состава реаги- [c.366]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]


    С возрастанием порядкового номера галогена, а уменьшение прочности связи в ряду Н—Р, р[—С1, Н—Вг — к переходу от экзотермических процессов (а) и (б) к эндотермическому процессу (в). [c.114]

    Изменение энтальпии при переходе твердого, жидкого или газообразного вещества в раствор называют теплотой или энтальпией растворения. Эндотермические процессы характеризуются положительным изменением энтальпии (АН), а экзотермические — отрицательным. Различают интегральные и дифференциальные теплоты растворения. [c.374]

    Экзотермические эффекты могут быть обусловлены переход( л из неравновесных состояний в равновесные, например переход из аморфного состояния в кристаллическое. Эндотермические эффекты связаны с фазовыми превращениями (плавление, испарение, возгонка, полиморфные превращения) или химическими процессами (окисление, разложение, дегидратация, диссоциация и др.). При нагревании большинства веществ наблюдается несколько превращений, которые регистрируются на кривой ДТА при соответствующих температурах термическими эффектами, характерными для данного вещества. В связи с этим по термограмме можно дать качественную характеристику исследуемому вешеству, определить температуры фазовых превращений или химических процессов, измерить тепловой эффект процесса. Метод ДТА обладает более высокой чувствительностью по сравнению с обычным методом термического анализа. [c.415]

    Удельные соотношения эндотермических реакций расщепления и экзотермических реакций гидрирования на каждом участке кинетической кривой зависят от химического состава образовавшихся продуктов реакции [121]. При изменении характеризующего фактора сырья от 12,10 до 10,45, т. е. при переходе от парафинистого сырья к сильно ароматизированному, роль гидрирования по сравнению с деструкцией значительно возрастает и тепловой эффект может изменяться от —50 до 200 ккал кг исходного сырья [121]. [c.177]

    При образовании нефтяного кокса в реакционных аппаратах жидкая фаза постепенно переходит в твердую фазу. Весь процесс коксообразования в кубах условно принято делить на три стадии от начала возникновения зародышей до их агрегирования. При нагревании нефтяных остатков имеют место как реакции распада, так и реакции конденсации и уплотнения. Реакции распада являются эндотермическими, т. е. требуется подвод тепла извне, а реакции конденсации и уплотнения - экзотермическими и протекают с выделением тепла. При коксовании с периодической загрузкой доля экзотермических реакций к концу цикла достигает наибольшего значения, и выделяющееся тепло ускоряет протекание реакций, которые приобретают характер цепных. [c.93]

    В том случае, когда процесс лимитирует теплопередача, решением проблемы может стать многотрубный реактор, который удобнее моделировать при переходе с малого масштаба на трубы полного размера. Это позволяет избежать трудностей, которые возникают, если масштабный переход делают на основе данных, полученных в условиях, не соответствующих изотермическим и адиабатическим. Прекрасным примером сильно эндотермической реакции такого рода является реакция парового риформинга. Лучший способ испытания катализаторов риформинга заключается в испытании в трубах полного размера, т. е. на полупромышленной установке. Это большое преимущество, так как моделируется промышленная работа, при которой просто увеличивается число труб. Однако и тщательно разработанные испытания небольшого масштаба имеют большое значение — для начального быстрого просеивания новых каталитических композиций. В этих случаях используются небольшие трубные реакторы, обогреваемые таким образом, чтобы воспроизвести обычный температурный профиль в реакторе. [c.57]

    Стремление к переходу в наиболее вероятное состояние характерно и для более простых систем, состоящих не из разных, а из одинаковых молекул. Так, вода может находиться в трех агрегатных состояниях твердом, жидком или газообразном. Однако наиболее вероятным, наиболее выгодным состоянием молекул воды является газообразное (вспомните стремление льда сублимироваться, а воды — испаряться). Причина этого заключается в том, что именно в газообразном состоянии каждая молекула воды может осуществлять непрерывное, хаотическое, беспорядочное перемещение относительно других молекул. Б конденсированных состояниях (жидком и твердом) такая способность у молекул воды уже в значительной мере утрачена. Переход в газообразное состояние из жидкого или твердого сопровождается значительным расходом теплоты (т. е. является эндотермическим процессом). Однако такой переход самопроизвольно происходит в случае, когда газообразное состояние является при данных условиях (например, при высоких температурах) единственно возможным агрегатным состоянием (так, при 4 >100 °С и р<10 Па вода существует только в газообразном состоянии). [c.51]


    Рассмотрим применение метода масштабных переходов на примере проведения эндотермической реакции в пилотном реакторе диаметром 0,6 м и геометрически подобном ему аппарате диаметром 1,8 м. Масштабный коэффициент для линейных размеров равен 3, для поверхностей 9, для объемов — 27. Тепло, необходимое для процесса, зависит от количества сырья, которого на промышленной установке требуется в 27 раз больше, чем на пилотной. Поверхность нагрева на промышленной установке только в 9 раз больше, чем на пилотной, поэтому интенсивность теплопередачи на промышленной установке больше в 3 раза. [c.145]

    Переходя теперь к изменениям общего теплосодержания, следует указать, что как дегидрирование, так и разрыв цепи являются эндотермическими процессами. Из приближенных уравнений изменения свободной энергии при реакциях дегидрирования и разрыва цепи нельзя непосредственно определить значения теплот реакции. [c.107]

    В случае, когда энергия переходит от окружающей среды к системе, теплоту процесса принято считать положительной (Q > 0) Процесс, сопровождающийся положительным тепловым эффектом, называют эндотермическим. В противном случае (Q < 0) процесс называют экзотермическим. [c.21]

    Полиморфные превращения энантиотропного характера сопровождаются эндотермическим эффектом, а монотропного, т. е. переходом неустойчивой при данной температуре модификации в устойчивую, — экзотермическим эффектом. [c.7]

    Если энергия системы в каком-то процессе возрастает, то и положительно 17 >0) если энергия уменьшается, то (117 отрицательно (117 < 0). Если в результате обмена энергией в форме теплоты энергия системы возрастает, т. е. какая-то порция энергии переходит в форме теплоты из окружающей среды в систему, то bQ считается положительным. К сожалению, условие знаков для ЬQ, принятое в термодинамике, не совпадает с условием знаков, традиционно принятым в химии. В химии было принято считать, что в экзотермических процессах энергия (точнее, энергия, выделенная в форме теплоты) имеет положительное значение и соответственно при эндотермических процессах — отрицательное. В дальнейшем всегда будет использоваться термодинамическое условие знаков. Принятое в химии [c.14]

    Теплотами фазовых превращений называют тепловые эффекты полиморфных переходов, плавления, испарения и сублимации. Полиморфные переходы, т. е. процессы превращения одних кристаллических форм вещества в другие в последовательности возрастания температуры могут быть двух типов экзотермические (моно-тропные)—необратимые, односторонне осуществимые, и эндотермические (энантиотропные)—обратимые, двусторонне осуществимые. Примерами полиморфизма могут служить переходы серого олова в белое или моноклинной серы в ромбическую. Процессы плавления, сублимации и испарения во всех случаях являются эндотермическими (в направлении возрастания температуры). С повышением температуры теплота парообразования любого вещества уменьшается и при критической температуре обращается в нуль. Фазовые превращения при условии постоянства давления осуществляются при строго определенной температуре. [c.22]

    Образование растворов с положительными отклонениями давления пара сопровождается поглощением теплоты, т. е. увеличением энтальпии (Р<0, АЯ>0). Давление пара над раствором связано с тепловым эффектом его образования эндотермический эффект при растворении влечет за собой уменьшение количества теплоты, необходимой для перехода жидкости в пар, и это приводит к тому, что процесс испарения термодинамически протекает легче и давление пара раствора и составляющих его компонентов повышается. Обычно системы с положительными отклонениями образуются с некоторым увеличением объема. [c.102]

    Укажите, какие из приведенных фазовых переходов будут экзотермическими, а какие — эндотермическими  [c.22]

    На рисунке 1 представлены дериватограммы, показывающие за кономерности, общие для всех трех коксов. Из анализа кривых Д.Т.А., Д.Т., Т следует, что при 80—100°С масса кокса уменьшается вследствие удаления влаги. При 500°С на кривой Д.Т.А. наблюдается начало значительного эндотермического эффекта, а на кривых Д.Т. и Т — начало интенсивной убыли массы. Максимальная скорость теплопоглощения и убыли массы для всех коксов соответствует 630—650°С. С дальнейшим повышением температуры скорость теплопоглощения падает и наблюдается постепенный переход эндотермического эффекта в экзотермический, с максимумом последнего при 760—770°С. В области температур 900— 950°С процесс тепловыделения прекращается, и до 1200°С заметных изменений в коксе не происходит. Продолжающийся процесс [c.247]

    При 1200 С на кривых Д.Т.А. вновь наблюдается начало эндотермического эффекта, а на кривых Т.6. и Д.Т О —увеличение скорости убЬши массы. Проведенные исследования и имеющиеся литературные данные [1,3, 4] дают возможность объяснить термохимические превращения процесса прокаливания нефтяных коксов. В интервале температур 500—700°С протекают как реакции расщепления, которые сопровождаются отрицательным тепловым эффектом, так и реакции синтеза новых связей, сопровождающиеся положительным тепловым эффектом. До температуры 700°С преобладают реакции расщепления и на кривой Д.Т.А. виден пик процесса теплопоглощения. Дальнейший подъем температуры характеризуется преобладанием реакций синтеза и переходом эндотермического эффекта в экзотермический. Известно [1,3], что при 700—900°С наблюдается наибольшая скорость снижения электросопротивления, максимум выделения водорода и интенсивная усадка кокса. [c.248]

    Обращаясь к. эндотермическому процессу, мы видим (рис. III. 3), что прямая 4 всегда пересекается с кривой р(Т р) лишь в одной точке и соответствующее стационарное состояние устойчиво. Эндотермический процесс устойчив при всех обстоятельствах действительно, снижение температуры приводит к уменьшению скорости реакции, останавливающему дальнейшее падение температуры аналогичным образом система возвращается к первоначальному состоянию и при случайном повышении температуры неравенстно (III. 67) при /г<0 выполняется тождественно. Ясно, что переход эндотермического процесса во внешнедиффузионную область весьма маловероятен. Вопрос об учете изменения температуры поверхности в эндотермическом процессе, тормозимом внешней диффузией, сводится к совместному численному решению уравнений (III. 66) и (III. 17). [c.139]

    При проведении экзотермических процессов, как адиабатических, так и с внутренним теплообменом, иногда применяют автотермиче-ские реакционные узлы, конструкция которых позволяет осуществлять охлаждение реагирующей смеси в промежуточных теплообменниках или в зоне реакции с помощью теплообмена с холодной исходной смесью, одновременно нагревающейся до температуры реакции. Теплообмен между входящим и выходящим из реактора потоками может быть осуществлен и в емкостных (одностадийных) адиабатических реакторах. В отдельных случаях, когда допустим значительный перегрев хотя бы одного из реагентов (например, водяного пара), подобный принцип применим и при проведении эндотермических нроцессов. Преимуществом автотермических реакционных узлов является уменьшение затрат на теплообмен, а также определенные конструктивные удобства, особенно важные при проведении реакций под давлением. Основным недостатком этих схем является возникновение явлений неустойчивости и скачкообразного перехода между различными режимами процесса. [c.268]

    Выше 1) было указано, что величина внутренней энергии, а следовательно, и энтальпии определенной массы данного вещества зависит от его агрегатного состояния и температуры. Последовательность агрегатных превращений с изменением температуры показывает, что вешества обладают наибольшим запасом внутренней энергии, я следовательно, и наибольшей энтальпией в газообразном состоянии. В жидком состоянии этот запас меньше, а в твердом (кристаллическом) —еще меньше. Отсюда ясно, что фазовые переходы должны сопровождаться энергетическими эффектами выделением энергии при переходе вен1естБ из состояния с большей энтальпией в состояние с меньшей энтальпией и поглощением зисргии при обратном переходе. Таким обра юм, сжижение газа и кристаллизация жидкости — процессы экзотермические, а плав 1еиие кристаллов и испарение жидкостей —. эндотермические. [c.81]

    Рассматривая реакции Н-перехода между алкильными радикалами и алкенами, отметим следующее. Реакции с этиленом протекают как эндотермические и равновесие сдвинуто в сторону образования исходных алкильных радикалов [257]. Так, в случае реакций Н + С2Н4 =г КН + -СаНз (К—С2Н5, СзН, и т. д.) Ig/ 1, что свидетельствует о высокой активности винилового радикала. Реакции с более сложными олефинами (СзНе, С1Нд и т. д.) являются экзотермическими и равновесие сдвинуто в сторону образования продуктов реакции. Следовательно, в соответствующих реакциях алкильные радикалы (начиная с С3 и т. д.) являются более активными, чем сходные с ними алкенильные радикалы. [c.164]

    На рис. 21 показаны потенциальные кривые для адсорбции цезия на поверхности фтористого кальция. Из приведенных данных следует, что адсорбция иона цезия представляет собой эндотермический процесс. При поглощении света с определенной длиной волны происходит переход из минимума В в точку Р на верхней кривой и одновременно освобождается электрон, который может отводиться в виде фотоэлектрона. Этим фотоионизацион-ным процессом полностью объясняется избирательный фотоэлектрический эффект [46], Под влиянием теплового возбуждения [c.87]

    Изменение температуры может либо увеличивать, либо уменьшать растворимость веществ. Это зависит от знака теплового эффекта, наблюдаемого при растворении одного моль вещества в бесконечно большом количестве его насыщенного раствора, так называемой последней теплоты растворения (см. гл. III). Если при этом растворении теплота поглощается, то, согласно принципу Ле-Ша-телье, подвод ее вызовет процесс, ослабляющий внешнее воздействие на систему, т. е. дальнейшее растворение вещества. В противном случае подвод теплоты вызовет частичное выделение растворенного вещества, т. е. уменьшение его растворимости, что также ослабит влияние внешнего воздействия на систему. Возможна и перемена знака теплового эффекта с изменением температуры, т. е. переход его от экзотермического эффекта через нуль к эндотермическому эффекту, или наоборот. Соответственно этому должна измениться и зависимость растворимости данного вещества от температуры. [c.100]

    Отметим, что для ряда частично-кристаллических полимеров (полидиэтилсилоксана, различных полиорганофосфазенов) характерно наличие существенно разделенных по температурной шкале областей плавления трехмерной кристаллической структуры и жидких кристаллов. Эти фазовые переходы представляют собой эндотермические процессы и реализуются в широком интервале температур, причем 7 пл <7 пл  [c.31]

    Одним из эффективных методов изучения термических свойств материалов стал метод дифференциальной сканирующей калориметрии (ДСК). В соответствии с принципом ДСК предусматривается автоматическая электрическая компенсация при изменении тепловой энергии в пробах, вследствие чего температура проб будет поддерживаться регулятором на одном и том же уровне при фазовых переходах вещества. Необходимая для компенсации электрическая энергия будет фиксироваться на оси ординат. Таким образом, экзо- и эндотермические пики будут регистрироваться и единицах энергии. Полученные кривые представляют собой зависимость теплового потока dUiut от температуры. Так же как и в ДТА, при ДСК площадь пика характеризует теплоту реакции. Исследуемый образец при ДСК находится в изотермических условиях по отношению к инертному материалу. При этом количество теплоты, необходимой для поддержания изотермичееких условий, фиксируется как функция времени или [c.35]

    Так как изменения внутренней энергии н энтальпии при постоянной температуре не зависят от пути перехода из начального состояния в конечное, то п равные им тепловые эффекты реакции Qp и Qv (соответственно при постоянном давлении и постоянном объеме) также приобретают свойства функций состояния, т. е. зависят только от вида и состояния исходных и конечных веществ и не зависят от промежуточных стадий реакции. Это положение Гесс сформулировал в виде закона постоянства сумм теплоты, использовав большой опытный материал. Этот закон лежит в основе всех термохимических измерений. Тепловые эффекты реакций AU(Qo) и AH Qp) измеряются экспериментально или вычисляются. Увеличение Аи или АН соответствует эндотермическому процессу (тепло поглощается), а их уменьн]ение — экзотермическому процессу (тепло выделяется). [c.34]

    Если Д//> О (эндотермический процесс), то пр обр>0, т. е Епр > обр , если Дя<0 (экзотермический процесс), пр- с1бр<0, т. е. Enfсхемы протекания реакций метана с галогенид-ионами. Ось ординат характеризует энтальпию системы Н, ось абсцисс - реакционный путь, приближенно соответствующий времени, отсчитанному от начального момента, когяа частицы не взаимодействуют. Уменьшение реакционной способности при переходе от к С1 обусловливает увеличение энергии активации Е процессе [c.237]

    На рис. 2.15 волнообразная зависимость q от га для адсорбции воды цеолитом KNaX сопоставлена с зависимостью от га средней молярной теплоемкости адсорбированной воды Ст- Теплоемкость особенно чувствительна к фазовым и молекулярным переходам в адсорбате. Из рисунка видно, что наиболее высокой начальной теплоте адсорбции соответствует низкая теплоемкость. Далее спадам на кривой q соответствуют максимумы на кривой Ст- Это показывает, что вблизи соответствующих значений га при нагревании происходит эндотермический распад части ассоциатов, образованных молекулами воды вначале с цеолитом, а затем и друг с другом, так как теплота диссоциации вносит свой вклад в теплоемкость адсорбированной воды. Приведенные на рис. 2.14 и 2.15 данные указывают на то, что различия зависимостей q от для цеолитов X с разными щелочными катионами и o oeenHO H кривых q и С, для цеолита KNaX связаны с тем, что при адсорбции воды чаряду с межмолекулярным взаимодействием адсорбат—адсорбент происходит сильное межмолекулярное взаимодействие адсорбат— адсорбат с образованием структурированной водородными связями сетки из молекул воды. [c.41]

    Температура кипения серы (444,7 °С) является одной из вторичных стандартных точек международной шкалы (IV 3 доп. 34). Теплота испарения серы составляет 2,2 ккал/г-атом. Ъ парах имеет место равновесие главным образом между молекулами Са, 8б, 84 и 82, причем переход от 8а к 82 осуществляется эндотермически  [c.321]


Смотреть страницы где упоминается термин Переход эндотермический: [c.216]    [c.415]    [c.221]    [c.160]    [c.47]    [c.141]    [c.175]    [c.312]    [c.73]    [c.237]    [c.155]    [c.400]    [c.186]    [c.96]   
Новейшие методы исследования полимеров (1966) -- [ c.287 ]




ПОИСК







© 2024 chem21.info Реклама на сайте