Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория диэлектрической проницаемости и потерь

    II. ТЕОРИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ПОТЕРЬ [c.307]

    Для объяснения экспериментально полученных результатов по изучению зависимости диэлектрической проницаемости е и тангенса угла потерь от условий выращивания и термообработки синтетических алмазов привлекались известные положения, развитые в релаксационной теории поляризуемости гетерогенных систем. [c.451]


    Интерес к исследованиям диэлектрических потерь и проницаемости полимеров обусловлен не только важностью этих характеристик для практических применений. Современные теории диэлектрической поляризации и потерь позволяют в ряде случаев связывать значения г tgS = e"/e и параметры, характеризующие их зависимость от температуры и частоты электрического поля, со строением полимера и характером теплового движения макромолекул, т. е. имеются возможности использовать измерения этих величин для получения ряда сведений о строении полимера. [c.18]

    Для экспериментальной проверки изложенных выводов нами были измерены диэлектрические проницаемости и потери бинарного раствора ацетон — бензол при длине волны X, = 8,15 лгж в интервале температур от 0 до - -40° (табл. 1). Диэлектрические свойства ацетона при низких частотах довольно хорошо описываются теорией Онзагера. Можно считать, что в ацетоне ближний ориентационный порядок выражен слабо. Следует ожидать, что в растворе ацетона в бензоле (неполярном растворителе) практически нет каких-либо преимущественных ориентаций полярных молекул по отнощению друг к другу. Наблюдаемые отклонения значений е и г" раствора от аддитивности в этом случае, по-видимому, полностью обусловлены влиянием флюктуаций концентрации. Если это так, то уравнения (14, 15) должны дать количественное отображение экспериментальных данных. [c.41]

    Рассмотрим допущения, сделанные в работах /33,34/ при решении электродинамической задачи и выводе соотношений для определении 1д ( . В строгой теории, в которой д" жидкости определяется по данным о добротностях пустого и заполненного резонатора при постоянной резонансной частоте, необходимо рассматривать диэлектрическую пластинку как слой определенной толщины и диэлектрической проницаемости, образующий третью секцию резонатора. В /33/ авторы пренебрегли влиянием пластинки на распределение энергии и мощностью потерь в ней, считая, что ее толщина мала по сравнению с длиной волны. [c.103]

    Отыскание адэкватных форм аналитического выражения связей между структурой и диэлектрическими свойствами вещества наталкивается на трудности расчета локального поля ц индуцированной поляризации, учета ближних и дальних сил, флуктуаций в статистическом ансамбле зарядов. В частности, одним из сложных вопросов является вопрос о соотношении макроскопического (т) и микроскопического (т ) времен релаксации. Как известно, т определяется из условия (ОтТ=1, где (От — частота приложенного поля, при которой фактор диэлектрических потерь е" достигает максимума, а зависимость диэлектрической проницаемости е от частоты претерпевает перегиб. Законность отождествления т и т не очевидна, так как различия между напряженностью внешнего и локального, действующего на молекулу, полей может составлять несколько порядков. Теоретические расчеты показали, однако, что отношение х 1% не выходит за пределы 0,67—1,0 [1]. Обосновывая с достаточной надежностью связь между молекулярными и макроскопическими характеристиками, существующие теории дипольной поляризации обеспечивают базу для дальнейшего развития диэлектрического метода изучения структуры вещества — установления структурно-релаксационных связей в условиях различных фазового и агрегатного состояний, температуры и давления. Особое значение это имеет для полимеров, в которых сложное молекулярное строение обусловливает сложный спектр релаксационных и структурных переходов, а следовательно, и многообразие физических и физико-химических свойств. [c.156]


    Интерес к исследованиям диэлектрических потерь и проницаемости полимеров обусловлен не только важностью этих характеристик для практических применений. Современные теории диэлектрической поляризации и потерь позволяют в ряде случаев связывать [c.114]

    В книге подробно и систематически рассмотрены вновь разработанные количественные методы, позволяющие однозначно определять строение жидкостей и концентрированных растворов и особенности теплового движения молекул в этих системах. Приведено описание методики измерения диэлектрической проницаемости и диэлектрических потерь в полярных жидкостях и растворах в миллиметровом и сантиметровом диапазонах радиоволн и способы теоретической обработки получаемых результатов. Приведено описание фотоэлектрической методики исследования релеевского рассеяния света в слабо рассеивающих жидкостях и растворах и теории, позволяющей по данным о релеевском рассеянии света вычислять периметры, характеризующие структуру жидкостей. Рассмотрен ряд общих проблем теории жидкого состояния и теории концентрированных растворов. [c.435]

    Исследованию диэлектрических потерь и проницаемости полимеров посвящено большое количество работ, результаты которых обобщены в ряде обзоров. Интерес к таким исследованиям стимулируется возможностью на основе современных теорий диэлектрических потерь и проницаемости связать эти величины со строением макромолекул и структурой полимеров в блоке. [c.5]

    Теория диэлектрических потерь Дебая дает следующее соотношение между диэлектрической проницаемостью и коэффициентом потерь е" для раствора полярной жидкости в неполярной  [c.429]

    В 1955—1963 гг. М. И. Шахпаронов исследовал диэлектрические свойства индивидуальных жидкостей и растворов. Было показано, что необходимо различать локальные и макроскопические свойства молекулярных систем. При этом локальными значениями онойств называются такие значения, которые имела бы вся макроскопическая система, если бы ее состояние, т. е. плотность, среднее значение импульсов частиц и т. п., было то же, что и в рассматриваемом элементе объема в данный момент времени. Средние локальные и экспериментально найденные средние макроскопические значения диэлектрической проницаемости, потерь и ряда других свойств не совпадают друг с другом. В растворах, характеризующихся положительными отклонениями от закона Рауля, средние локальные значения диэлектрической проницаемости и диэлектрических потерь больше средних макроскопических. Различие между этими величинами вызвано влиянием мелкоструктурных флуктуаций концентрации, занимающих объем, радиус которого по порядку величины равен утроенному радиусу молекул. Теория и метод расчета мелкоструктурных флуктуаций концентраций были впервые развиты М. И. Шахпароновым. [c.189]

    Рассмотрим случай сот— °о. Тогда е = есо, а е"— -О. Для полимеров это условие соответствует или очень высоким частотам (со— -оо т = сопз1), или очень низким температурам ((й = сопз1 т—>оо). Таким образом, из феноменологической релаксационной теории следует, что при низких температурах можно ожидать уменьшения диэлектрической проницаемости е и соответствующих потерь, определяемых параметром г". [c.186]

    Высокое значение диэлектрической проницаемости и угла диэлектрических потерь, характерные для многих поликристаллических ферритов, находят удовлетворительное объяснение в рамках теории Вагнера—Купса [152]. В соответствии с этой теорией, ферриты состоят из участков с большой электронной проводимостью — кристаллит, окруженные участками с малой проводимостью — межкристаллитная прослойка. Теория неоднородности позволяет объяснить высокую диэлектрическую проницаемость ферритов, падающую с частотой, наличием максимумов в частотных и температурных зависимостях tgб, а также влиянием условий спекания на свойства ферритов, как результат изменения их кера Мической структуры. [c.25]

    Таким образом, электростатическую составляющую энтропии гидратации можно с одинаковым успехом рассчитать как из уравнения Борна, так и из соотношения Франка. В подобных расчетах следует учитывать существование свободного пространства вблизи ионов [149], диэлектрическое насыщение [155] и изменение диэлектрической проницаемости с давлением [134]. Оценка справедливости существующих теорий представляет определенную трудность, поскольку больщинство из них пренебрегает вкладом энтропийных составляющих, перечисленных в п.п. 1, 2 и 5. Возможно, однако, что потери энтропии ири растворении газообразных ионов по пот рядку величин соизмеримы с выигрышем энтропии при смешивании, и, следовательно, эти два фактора взаимно компенсируются, если пренебречь вкладом составляющих, ириведенных в п.п. 1 и 2. Большинство неэлектростатических взаимодействий, подобных, например, структурным эффектам, по-видимому, не вносят существенного вклада в свободную энергию и энтропию гидратации, но ими нельзя пренебрегать при рассмотрении таких свойств ионов, как энтропия и теплоемкость. [c.49]


    В первом разделе данной работы в связи с этим изложены основные идеи и математический аппарат метода кинетических уравнений для классических систем, главным образом по схеме Боголюбова, и рассмотрены возможные пути последовательного применения этого метода для решения задач в физике полимеров. Во втором разделе приведены основные сведения из теории флюк туаций, рассмотрена взаимосвязь флюктуационных характеристик с внутренним трением, модулями упругости, диэлектрической проницаемостью и диэлектрическими потерями в полимерных материалах, [c.351]

    Следует учитывать не только релаксационный характер деформационно-прочностных свойств полимеров в нагруженных адгезионных соединениях. По мнению Москвитина [21], потери энергии на возбуждение электронов в зоне разрыва также имеют релаксационный механизм. Именно этим можно объяснить увеличивающуюся электризацию и перезарядку поверхностей при ускоренном разрыве. В соответствии с электрорелаксационной теорией адгезионная прочность определяется природой сил взаимодействия между адгезивом и подложкой, числом точек контакта и площадью истинной поверхности контакта, расстоянием между контактирующими точками, диэлектрической проницаемостью среды между контактирующими точками. [c.19]


Смотреть страницы где упоминается термин Теория диэлектрической проницаемости и потерь: [c.103]    [c.11]    [c.191]    [c.203]    [c.629]    [c.638]    [c.54]    [c.131]   
Смотреть главы в:

Методы измерения в электрохимии Том2 -> Теория диэлектрической проницаемости и потерь




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Диэлектрические потери диэлектрических потерь



© 2025 chem21.info Реклама на сайте