Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды дуговых печей

Рис. 85. Схема вакуумной дуговой печи с расходуемым электродом для плавки титана Рис. 85. Схема <a href="/info/21292">вакуумной дуговой печи</a> с расходуемым электродом для плавки титана

    В электротермии углеродные материалы используют для изготовления нагревателей, экранов, теплоизоляции, элементов конструкции. Нагреватели могут быть подразделены на электроды дуговых печей и нагреватели индукционных установок и печей сопротивления [52]. Конструкционные углеродные материалы МГ, МГ-1, ГМЗ, ППг нашли наиболее широкое применение в вакуумных печах сопротивления, в том числе взамен вольфрамовых и молибденовых для плавки редких и полупроводниковых металлов. Так, нагреватели из графита марки ГМЗ при вакууме до 1,33 Па работают при температуре до 2000 напряжении 12—24 В и силе тока 1500—2000 А, выдерживают в среднем 20 плавок продолжительностью 5 ч каждая [109]. Несложность механической обработки позволяет изготовлять нагреватели диаметром до 500 и длиной до 1400 мм. [c.257]

    Конструкция ВДП с расходуемым электродом показана на рис. 4.20. Расходуемый электрод 5, выплавленный в дуговой печи и прокатанный или прокованный из слитка, закрепляется в электрододержателе 2 на конце штока 1. При плавке титана или циркония электроды прессуют из губки титана или циркония, получаемой металлотермическим процессом. При плавке молибдена, ниобия и тантала электродом является пучок штабиков, полученных методом порошковой металлургии. Обычно в электрододержателе остается зажатым Огарок электрода предыдущей плавки и к нему приваривают новый расходуемый электрод. Последний устанавливается в кристаллизаторе 5 в специальной корзине, чтобы обеспечить их соосность печь откачивают, включают, и между огарком и новым электродом зажигается дуга. [c.232]

    В промышленности используются преимущественно дуговые печи, в которых необходимая энергия образуется вследствие возникновения электрической дуги между электродами и шихтой. Дуговая сталеплавильная печь за один раз (одна садка) выплавляет от 200 до 400 т, затрачивая на это 50—70 мин. Это в 10 раз быстрее, чем выплавка стали в мартене. Современная дуговая сталеплавильная печь сверхвысокой мощности имеет удельный расход энергии значительно более низкий, чем мартеновская печь. Немаловажен и тот факт, что труд сталевара у мартеновской печи значительно тяжелее и [c.152]

    Важным научным результатом является установленная особенность природы твердых растворов СггОз в хромистом электрокорунде дуговой и индукционной выплавки и в рубине [6]. Показано, что де-баевское кольцо на рентгеновской картине электрокорунда дуговой выплавки имеет ореольную структуру, что свидетельствует о множестве расстояний dm, градиентах концентраций хрома в кристаллитах корунда и наличии в них внутренних напряжений [6]. Сделано предположение, что растворенный в а-корунде хром сегрегирует по межблочным границам. Это приводит к обогащению последних хромом и сильному структурному искажению. Такое поведение хрома связано с частичным восстановлением хромистого электрокорундово-го расплава углеродом электродов дуговых печей. [c.258]


    ЭЛЕКТРОДЫ ДУГОВЫХ ПЕЧЕИ [c.273]

    Дуговые печи косвенного действия дуга горит между электродами, а расплавляемому металлу тепло от дуги передается [c.4]

    Нагревание электрической дугой проводят до температуры 3000 °С в дуговых печах за счет пламени дуги, возникающей между электродами. Дуговые печи применяются для плавки металлов, получения фосфора, карбида кальция. [c.219]

    Примером целесообразного применения пневматического привода является механизм пружинно-пневматического зажима электрода дуговой печи. [c.263]

    Нагревание электрической дугой применяется в дуговых печах и дает возможность развивать высокие температуры (1500— 2000° С и выше). Различают печи с открытой и закрытой дугой. В печах с открытой дугой пламя дуги образуется между электродами, расположенными над нагреваемым ма териалом, и тепло передается путем лучеиспускания. В печах с закрытой дугой пламя дуги образуется между электродом и самим нагреваемым материалом. Дуговые печи не обеспечивают равномерного обогрева и точного регулирования температур. Использу- [c.420]

    В дуговых печах тепло выделяется в результате го <ения электрической дуги. По расположению дуги относительно металлической шихты дуговые печи подразделяются на печи косвенного нагрева, печи прямого нагрева и печи комбинированного нагрева. Наиболее распространены печи прямого нагрева, в которых электрические дуги горят непосредственно ме цу каждым из электродов и металлом. [c.87]

    Рабочее напряжение, подаваемое на электроды, колеблется в зависимости от емкости печи от 110 до 800 В. Для уменьшения потерь энергии электрический ток подается к печам под напряжением б—10 кВ через понижающий трансформатор. В табл. 5.4 приведены характеристики наиболее распространенных дуговых печей ДСП-100 и ДСП-200. [c.88]

    Вакуумная дуговая печь 1 — электрод (очищаемый металл), [c.97]

    Плазменно-дуговая печь 1 — плазмотрон, 2 — подовый электрод. 3 — жидкий металл, 4 — устройство для перемешивания металла, 5 — выпускное отверстие [c.97]

    Нагревание электрической дугой. Нагревание производят в дуговых печах, где электрическая энергия превращается в тепло за счет пламеии дуги, которую создают между электродами. Над нагреваемым материалом либо помещают оба электрода, либо устанавли-пают над материалом один электрод, а сам материал выполняет роль второго электрода. Электрическая дуга позволяет сосредоточить большую электрическую мощность в малом объеме, внутри которого раскаленные газы и пары переходят в состояние плазмы. В результате удается получить температуры, достигающие 1500—3000 °С. [c.323]

    В промышленности применяют преимущественно дуговые печи (рис. 68), в которых теплота получается вследствие образования электрической дуги между электродами и шихтой. [c.178]

    В дуговой печи короткое замыкание (КЗ) электродов на металл — нормальное эксплуатационное явление в период расплавления число КЗ доходит до 5—10 в минуту. Поэтому необходимо ограничить ток КЗ приемлем ым для надежной работы электрооборудования значением. Обычно стараются, чтобы кратность тока КЗ к-номиналь-ному току не превосходила 3—4. Это достигается введением последовательно с дугами дополнительных индуктивностей. В мощных печах для этой цели достаточно индуктивности трансформатора и короткой сети — токоподвода от электропечного трансформатора к электрододержателям эти естественные индуктивности настолько велики, что ограничивают ток КЗ у самых крупных печей до двукратного номинального значения. Поэтому в мощных печах приходится заботиться об уменьшении, на-СКОЛЬКО ЭТО возможно, индуктивности контура из-за снижения коэффициента мощности установки, а также о согласовании параметров трансформатора и вторичного токоподвода. Наоборот, у малых печей естественной ин- [c.193]

    В 1892 г, Ачесон разработал процесс получения карборунда в электрической печи прямого действия. Печь работала как печь сопротивления ток проходил через керн между двумя группами электродов, нагревая его до температуры 1 800° С, необходимой для получения карборунда, В этом же году Муассан впервые получил в небольшой дуговой печи карбид кальция. [c.7]

    В последнее время появились вакуумные дуговые печи (рис. 0-2,6), которые также можно отнести к дуговым печам прямого действия. В вакуумных дуговых печах с нерасходуемым электродом дуга горит между последним и ванной жидкого металла в печах с расходуемым электродом дуга горит между расплавляемым металлом (расходуемый электрод) и жидкой ванной. Камера печи не имеет футеровки стенки ванны (кристаллизатор, тигель гарниссаж-ной печи) охлаждаются водой электрод — металлический вертикальный, поэтому в печах можно получить еще большие объемные мощности, чем в сталеплавильных, и проводить наиболее высокотемпературные процессы (плавка тугоплавких металлов — молибдена, вольфрама, ниобия, тантала). [c.4]


    Печи руднотермические для возгонки желтого фосфора. Общие сведения. Руднотермическая печь является основным агрегатом для электротермического получения желтого фосфора и относится к печам прямого нагрева. Теплота, необходимая для проведения технологического процесса, выделяется непосредственно в ванне печи при горении дуг и в результате активного сопротивления шихты и шлака прохождению электрического тока, подведенного самоспекающимися электродами. Поэтому руднотермические. печи относятся к классу дуговых печей сопротивления. [c.119]

    К дуговым печам косвенного действия можно отнести также плазменные установки (плазмотроны) и дуговые нагреватели газа. В этих установках дуга постоянного или переменного тока горит между электродами в потоке газа, нагревая последний (рис. 0-2,ж). Нагретый газ может быть использован для химических, металлургических и испытательных целей (дуговые нагреватели газа) или обрабатываемый материал может вводиться непосредственно в плазмотрон, в зону дуги (например, установки для напыления). [c.5]

    Несколько конструкций лабораторных дуговых печей было создано в 1878— 1880 гг. Сименсом в них дуга горела в тигле между двумя горизонтально расположенными электродами и между электродом и расположенной в тигле загрузкой. Сименс впервые предложил автоматически регулировать ток дуги перемещением электрода и использовать магнитное поле для отклонения дуги. Первые промышленные установки и электротермические процессы [c.7]

    Как видио из рис. 0-8, в подину дуговой печи закладывалась медная, охлаждаемая водой катушка, включаемая последовательно с электродом. Взаимодействие поля этой катушки с дугой приводило последнюю во вращение дуга закручивалась и сильно [c.15]

    Возросшая потребность в таких металлах, как титан, молибден, вольфрам, ниобий н др., привела к разработке способов переплава их в вакууме с целью дегазации и получения достаточно чистого металла. Распространение получили почти исключительно вакуумные дуговые печи с расходуемым электродом, работающие на постоянном токе. Питание их осуществлялось от машинных преобразователей. Сейчас начат переход на преобразователи па кремниевых вентилях с питанием от параметрических источников тока. [c.17]

    При наладке схемы автоматики перемещения электродов дуговой печи механизмы перемещения элехгтродов и противовесы должны быть ограждены. [c.357]

    Для подавляющего больши НСт а механизмов электро-печного оборудования к. п. д. и расход электроэнергии имеет подчиненное значение, за исключением случаев, когда за счет повышения к. п. д. целесообразно существенно уменьшить размеры приводного двигателя и маховой момент вращающихся масс. Последнее важно, в частности, для. привода механизма перемещения электрода дуговой печи, где инерция движущихся масс существенно сказывается на условиях поддержания электрического режима печи. [c.266]

    Механизмы перемещения электродов дуговых печей выполняются с электром еханическим и с гидравлическим приводом. [c.281]

    Процесс происходит с поглощением большого количества тепла, выделяющегося при прохождении электрического тока через слой загруженной шихты, расплава от электродов к поду печи, а также за счет тепла, выделяемого электрической дугой. Карбидные печи работают как дуговые печи сопротивления. [c.130]

    Дуговые печи. Для электроплавки применяются главным образом трекфазные дуговые печи переменного тока с тремя электродами и непроводящим подом. В соответствии с ГОСТ 7206-63 подобные печи выпускаются емкостью от 0,5 до 400 т. [c.87]

    Г. Кливер [73] предложил интересный вариант этого метода, объединив кар-бидизацию и хлорирование в одном процессе с расходуемыми электродами. Процесс проводится в дуговой печи. Одним электродом служит графитовый стержень, другим — графитовая трубка, заполненная шихтой из берилла и 15% мягкого угля. Хлор вдувают в пламя дуги высокой интенсивности (8300—11 000°). По мере испарения расходуемого электрода его опускают в печь с тем, чтобы расстояние между электродами было постоянным (25 мм). Позднее предложено оба электрода делать расходуемыми. Исследователи встретились с трудностями конструктивного порядка, особенно в связи с коррозией дуговой камеры. Сведений о продолжении работы в этом направлении нет. [c.202]

    Первоначально применялись дуговые печи с нерасходуемым электродом (вольфрам, графит). Плавка в них страдает существенными недостатками слиток загрязняется материалом электрода, проплавляется плохо, вследствие чего при последующей его обработке до 25% Т1 уходит в отходы необходим вторичный переплав слитка. Более совершенна плавка с расходуемым электродом, который сваривают из блоков, спрессованных из титановой губки (рис. 85). Этот способ позволяет получать более однородные слитки большого диаметра (до 600 мм) и массой до нескольких тонн как чистого титана, так и его сплавов. Печи для плавки титана — взрывоопасные агрегаты, поэтому при работе на них необходимо строго соблюдать правила техники безопасности. Основная опасность вакуумной плавки — прожигание стенкм кристаллизатора дугой. Перспективна электрошлаковая плавка с флю- [c.275]

    Описанный процесс называют основным, так как в нем используются основные — известковые шлаки, поэтому и футеровка печи должна быть из основного материала (магнезита). Выплавку стали основным процессом можно проводить в мартеновской или в дуговой сталеплавильной печи. В последней получается сталь более высокого качества, так как дуговая печь может быть довольно хорошо герметизирована, сгорающие графитовые электроды поддерживают в ней восстановительный характер атмосферы, что пвзволяет полностью раскислить металл, тогда как в мартеновской печи поддерживается окислительная атмосфера (иначе не будет сгорать топливо). Кроме того, дуговая печь представляет собой более гибкий агрегат, в котором легко управлять выделяемой мощностью. Поэтому наиболее ответственные сорта стали, требующие тщательной очистки, или высоколегированные, такие, как шарикоподшипниковая, электротехническая, инструментальная, нержавеющая, жароупорная, выплавляют в дуговых сталеплавильных печах (ДСП). В настоящее время в СССР около 10% вырабатываемой стали получают в ДСП. В связи с тем что мартеновские печи вытесняются кислородными конверторами, в которых выплавляют сталь примерно такого же качества, но более дешевую, объем производимой электростали должен резко возрасти. Кислородный конвертор работает на жидком чугуне и может утилизировать лишь 20—257о лома в садке. Поэтому часть лома не может быть использована в конверторах и должна быть переплавлена в ДСП. Это предполагает в будущем резкое увеличение выплавки электростали (примерно вдвое за ближайшие 10 лет). Такое количество дорогих высоколегированных сталей превышает народнохозяйственную потребность в них, поэтому в ДСП будут выплавлять и обычные (углеродистые) стали. Так как последние выплавляются в больших количествах, для них целесообразно строить печи большой емкости. [c.187]

    Вторичный переплав стали для ее дополнительной очистки может быть осуществлен не только в установках ЭШП, но и в вакуумных дуговых печах. Условия переплава стали в вакууме очень благоприятны, так как при этом имеет место мощное газовыделение из жидкого металла, а также испарение части неметаллических включений. Такой переплав можно проводить в вакуумных индукционных печах, однако их эксплуатация дорога, а главное — расплавленный металл в них соприкасается с футеровкой тигля и получает от нее неметаллические включения. Поэтому гораздо большее распространение получил переплав стали в вакуумных дуговых печах (ВДП), в которых металл расплавляется, как и при ЭШП, в медном кристаллизаторе, что обеспечивает направленную кристаллизацию и плотную структуру слитка. Поэтому в ВДП, как и в установках ЭШП, переплавляют наиболее ответственные сорта стали и выплавляют слитки массой в десятки тонн. В самых ответственных случаях прибегают к двукратному переплаву, причем иногда комбинируют переплав в ВДП с переплавом в установках ЭШП слиток, полученный в ВДП, служит электродом при электрошлаковом переплаве. При этом получается особо высокая степень очистки стали как от газов, так и от неметаллических включений креме того, вторичный слиток не требует обдирки (после переплава в ВДП приходится производить обдирку поверхности слитка на станке, ЧТООЫ СНЯТЬ покрывающую его корку). [c.230]

    Дуговые печи прямого дейстзия ду-пга горит между электродами и расплавляе- [c.4]

    Почти до конца XIX в. дуговые печи не выходили за пределы лабораторий. Это понятно, так как в то время мощных источ-ликов электрической энергии не было. Первую собственно дуговую лабораторную печь построил в 1849 г. Депре. В ней дуга горела между стенками небольшой реторты и помещенным внутри нее электродом. Почти одновременно в 1853 г. были выданы первые патенты (Пишон, Джонсон) на плавление металлов в электрической дуге. В печи Пишона предполагалось плавить рулы или металлы при их падении через дуги, горящие между горизонтально расположенными электродами (рис. 0-3,6). [c.7]

    Промышленное развитие дуговые печи получили на границе XIX и XX вв,, когда появились первые промышленные печи прямого действия Эру, Стассано построил первую шахтную электродомну для выплавки чугуна из руд, а Ачесон разработал процесс получения графитированных электродов в печах прямого действия. Тогда же приобрели промышленный масштаб процессы получения карбида кальция и ферросплавов в шахтных дуговых печах (рис, 0-3), [c.7]

    Так как выплавка чугуна из руды в дуговой печи в то время не могла экономически ко нкурировать с доменным процессом, то печи Стассано вскоре были переоборудованы для плавки стали из скрапа и были первыми промышленными дуговыми печами косвенного действия. Сталеплавильная печь Стассано (рис. 0-3,6) была значительно сложнее современных печей в ней было предусмотрено механическое перемешивание жидкого металла в садке, для чего печь вращалась на специальной платформе с роликами, установленной наклонно, так что ее ось описывала кояус. Это, естественно, затрудняло подвод энергии к электродам, который приходилось осуществлять через щетки, скользящие по бронзовым контактным кольцам. Еще труднее выполнить подвод воды, охлаждающей электрододержатели трех электродов (печь работала на трехфазном токе), скользящие вдоль направляющих и управляемые с помощью гидравлических приводов. Электроды, окруженные пустотелыми цилиндрами, охлаждаемыми водой, установлены слегка наклонно и их оси пересекаются на оси печи. Футеровка печи была выполнена из магнезита плавильное пространство ввиду сильного излучения дуг на свод было сделано очень высоким свод имел вид купола и составлял одно целое с кладкой стен. Сверху свода имелся слой теплоизоляции, что сильно ухудшало условия работы огнеупоров. Шихту загружали через боковое отверстие. [c.7]

    Первые дуговые печн прямого действия для выплавки стали были построены Эру в 1899 г. (рис. 0-3,а и 0-4). Их конструкция была очень проста в прямоугольную вытянутую ванну сверху через отверстие в съемном своде входили два электрода, закрепленные в электрододержателях, перемещающихся вверх и вниз вдоль вертикальных стоек, чем и осуществлялось регулирование тока дуги. Печь загружали через торцевые дверки, металл сливали через летку прн ее наклоне. Основным недостатком этих печей были невысокие удельная мощное) I) и рабочее напряжение, из-за чего расплавление металла шло медленно, тепловые потери и удельный расход были велики. Основное преимущество печей прямого действия — возможность концентрации больших мощностей и тем самым ускорение плавки здесь использовано не было, н поэтому индукционные печн со стальным сердечником и дуговые печи косвенного действия могли в то время успешно конкурировать с ними. [c.11]

    Внедрение дуговых печей прямого действия в металлургию стали сильно замедлилось, из-за того что конструкторская мысль шла по неправильному пути. Исходя из идеи, что эффективность работы печи можно заметно повысить, если организовать в се вапие усиленную конвекцию путем подогрева ее не только сверху, но и снизу, конструкторы сосредоточили усилия иа создании такого подогрева пропусканием рабочего тока через всю толщу металла и подину ванны. В 1900—1915 гг. появился ряд конструкций дуговых печей прямого действия с подовыми электродами, [c.11]

    Ныне все сталеплавильные дуговые печи строятся без подовых электродов. Попытки фирм Фиат и Мур сохранить подовый электрод с присоединением его к нулевой точке трехфазного печного трансформатора, соединенного в звезду, не дали положительных результатов. Как правило, печи работали с отключенными подовыми электродами, п вскоре фирмы от них отказались. Не привилось также предложение фирмы Демаг подключать заложенную в кладку подины электродную пластину через амперметр к нулевой точке печного трансформатора. Сопротивление подины в нормальных условиях настолько велико, что прибор не отмечает тока. В случае же повреждения подины, когда жидкий металл начинает проникать в глубь ее слоев, температура у электродной пластины повышается, ток через нее резко возрастает и регистрируется амперметром. Таким образом, подовый электрод являлся индикатором, сигнализирующим о начале аварии подины. Одиако с улучшением качества огнеупорных материалов и квалификации персонала прорывы подины стали крайне редкими, надобность в таком сигнализаторе отпала, и от него отказались. К тому же печные трансформаторы выполняются теперь обычно со вторичными обмотками, включенными в треугольник. [c.13]

    У современных дуговых печей электроды в подине сохранились лишь для обслуживания дифференциальных автоматических регуляторов режима. В этом случае сопротивление подины может быть в тысячи раз большим, чем тогда, когда через нее пропускались рабочие токи печи, что легко достигалось закладкой в магиезит нескольких стальных прутков, приваренных к корпусу печи. [c.13]

    Еще в 1928 г. Л, И, Морозенский предложил встраивать в кожух дуговой печи катушки, создающие вращающееся магнитное поле. Предполагалось, что оно приведет во вращение жидкий металл ванны и обеспечит его перемешивание не только в горизонтальной плоскости, яо и в вертикальной, что улучшит однородность состава и температуры металла и повысит скорость диффузии в ванне. Кроме того, предполагалось, что переключением катушек можно будет управлять дугами, заставляя ях вращаться или выдуваться к центру печи или по окружности распада электродов, ускоряя расплавление шихты. На небольшой печи (0,5 т) оба эффекта проявились, а вращение металла существенно ускорило его очищение от серы, фосфора и углерода. Однако при переходе на промышленные печи (3—5 т) эффект исчез, несмотря на увеличение мощности, затрачиваемой на вращение поля. Объяснялось это применением для создания бегущего поля тока промышленной частоты (малая глубина проникновения поля в металл) и неправильно принятым направлением вращения, [c.16]


Смотреть страницы где упоминается термин Электроды дуговых печей: [c.68]    [c.424]    [c.605]    [c.282]    [c.20]    [c.13]    [c.6]    [c.7]   
Смотреть главы в:

Справочник по электротермическим процессам -> Электроды дуговых печей




ПОИСК





Смотрите так же термины и статьи:

Вакуумная дуговая печь с нерасходуемым электродом

Вакуумная дуговая печь с расходуемым электродом

Печи дуговые



© 2025 chem21.info Реклама на сайте